
Master’s Programme in Security and Cloud Computing (SECCLO)

Towards formally verifying the TLS 1.3 Key
Schedule Security in SSBee

Amirhosein Rajabi

Master’s Thesis
2025

Research reported in this publication was supported by the Research Council of
Finland grant 35895 and the Amazon Research Award Secure Messaging: Updates,
Efficiency & Verification, Fall 2023.

© 2025

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Author Amirhosein Rajabi
Title Towards formally verifying the TLS 1.3 Key Schedule Security in SSBee
Degree programme Security and Cloud Computing (SECCLO)
Major Security and Cloud Computing
Supervisor Prof. Chris Brzuska, Prof. Sebastian Alexander Mödersheim
Advisor Prof. Christoph Egger
Date 15 July 2025 Number of pages 194 Language English

Abstract
TLS is one of the most important cryptographic protocols protecting communications
on the Internet. The standardization process of TLS 1.3 prioritized addressing security
issues over implementation concerns. Early drafts of TLS 1.3 standard welcomed
inspiration from the cryptography community and specifically the OPTLS handshake
by Krawczyk and Wee. TLS 1.3 key schedule is at the core of the TLS 1.3 handshake
responsible for all cryptographic operations deriving keys for the handshake and record
layer, such as handshake and application traffic secrets, among others.

The main security requirement for the key schedule is to generate pseudorandom
and unique keys given honest Diffie-Hellman shares or Pre-shared Key (PSK), or both
(depending on the key exchange mode). Brzuska, Delignat-Lavaud, Egger, Fournet,
Kohbrok, Kohlweiss (BDEFKK) (Asiacrypt, 2022) model these security goals and
reduce the security of the TLS 1.3 standard key schedule (as appeared in the standard)
to the security assumptions of the underlying primitives. BDEFKK capture the security
properties of the key schedule in the State-separating Proofs (SSP) framework. SSP is
one of the compositional frameworks in cryptography developed by the community
for modular security analysis. SSP enables BDEFKK to break the complexity of
the key schedule security games into several small components each with only one
responsibility. However, their modular analysis is still long and over 100 pages which
makes human verification difficult.

This thesis brings to light that formal verification of large scale proofs of real world
protocols’ cryptographic analysis is indeed approachable, provided the analysis itself
utilizes modular analysis and verification-friendly proof framework that makes the
gap with verification tools smaller. Specifically, we lay the foundations, formalize
the security games, and take steps towards verification of one subtle lemma from the
analysis of BDEFKK, pen-and-paper proof of which takes 10 pages of the paper, in
SSBee. SSBee is a novel software toolchain (and at the time of writing this thesis,
being actively developed by Chris Brzuska, Christoph Egger, and Jan Winkelmann)
tailored particularly for formalizing reduction proofs written in the SSP framework. We
successfully verify major statements in the lemma and find and add missing or minor
details in the proof. Additionally, we highlight verification techniques discovered
during different stages of the project. We conclude our verification story with our
vision for future of SSBee with promising integrations with other tools for program
verification.

4

Lastly, BDEFKK reduce the security of the key schedule to a new Salted Ora-
cle Diffie-Hellman (SODH) assumption among others. Inspired by mmPRF-ODH
assumption instantiation of Brendel, Fischlin, Günther, and Janson, we analyze the
assumption in the random oracle model and partially reduce to the well-known Strong
Diffie-Hellman (SDH) assumption introduced by Abdalla, Bellare, and Rogaway
and formally verify one non trivial step of the reduction with SSBee. Although
BDEFKK were more optimistically claiming that SODH assumption can be reduced
to Computational Diffie-Hellman (CDH) assumption, this thesis explains why it seems
too optimistic.

Keywords TLS 1.3 Key Schedule, Formal Verification, SSBee, Invariant Argument,
Code Equivalence, Salted Oracle Diffie-Hellman Assumption

Acknowledgements

I want to thank all my supervisors and advisors Chris Brzuska, Christoph Egger,
and Sebastian Mödersheim (in alphabetical order) for guiding me during the whole
process. Special thanks goes to Chris who retaught me Cryptography and mentored
and supported me during my whole master’s studies. I am grateful for the time and
effort you put in our discussions, all your feedback, the insights you gave me, as well
as answering my late hour and weekend long messages. Thank you for having faith
in me. I would like to thank Sebastian for all the fruitful discussions we had and the
experiences in Formal Verification that you shared with me. Thank you Christoph for
giving feedback offline or on Zoom for all my informally written proofs as well as
your amazing insights in modeling TLS security games in SSBee. Thank you all for
having me as a student.

I want to extend my thanks to Christoph Matheja and the rest of Program Verification
teaching team at DTU who introduced me to the Formal Verification world through
their amazing course and answering my questions on Teams. I also want to thank
my Program Verification course project teammates whose ideas in the project were
applicable in my thesis verification journey and indirectly affected it. Moreover, I
want to thank Jan Winkelmann for our discussions on SSBee and alternative solutions
to current SSBee limitations. I want to thank Kirthivaasan Puniamurthy for all our
crypto-related and non-crypto discussions.

I want to thank my friends (SECCLO, those in Iran, DTU, and elsewhere) who
had to listen to my thesis even in the middle of Finnish national parks. Thank you for
your feedback on my presentations. I even got inspirations and found mistakes in my
thesis after your questions in the woods. Thank you for all the fun atmosphere you
created. Spending time with you all in person and remotely on meetings kept me sane
and alive.

Last but not least, I want to express my sincerest gratitude to my family and loved
ones (my mom, dad, sister, uncle Reza and his family, grandparents). Without your
support, literally from my very first days, and your encouragement and motivation in
science, I wouldn’t have been where I am, career-wise, geographically, mentally, and
physically.

Helsinki, 15 July 2025

Amirhosein Rajabi

5

Contents

Abstract 3

Acknowledgements 5

Contents 6

1 Introduction 8
1.1 Symbolic model vs computational model 8
1.2 State-separating proofs (SSP) framework 9
1.3 Formal verification in the computational model 10
1.4 TLS 1.3 Key Schedule Security . 11
1.5 Original Research Questions . 12
1.6 Contributions . 12
1.7 Outline . 13

2 Preliminaries 15
2.1 State Separating Proofs (SSP) . 15

2.1.1 Security definitions in SSP 19
2.2 Paving the way for code equivalence 21
2.3 CCA-Secuirty of KEM-DEM . 26
2.4 SMT Solvers and SMT-LIB language 37
2.5 SSBee . 38

2.5.1 Proofs in SSBee . 39
2.5.2 Games and packages in SSBee 42

2.6 Proofs in SSBee: Revisited . 55
2.6.1 Reductions . 55
2.6.2 Code equivalence . 56
2.6.3 Randomness mapping . 59
2.6.4 Invariants . 63
2.6.5 KEM scheme correctness property as a lemma 65
2.6.6 Randomness mapping issue 66

2.7 How to run SSBee? . 67

3 TLS 1.3 Key Schedule 68
3.1 TLS 1.3 Handshake and Key Schedule 68

3.1.1 Towards a key schedule security model 72
3.2 Key Schedule Security Model . 74

3.2.1 Cryptographic Agility . 75
3.2.2 Handles . 76
3.2.3 Handle-based key derivation 76
3.2.4 Key names and parents . 77
3.2.5 Agile handles . 78
3.2.6 Resumption levels . 78
3.2.7 Packages . 79

6

3.2.8 Security games . 88
3.3 Overview of Key Schedule Security Analysis 92

3.3.1 Modular SODH assumption 93
3.3.2 Core key schedule security: Hybrid argument 94
3.3.3 Mapping parameters . 99
3.3.4 Applying the core key schedule security 104
3.3.5 Removing the mapping . 104

4 Towards Formal Verification of Key Schedule Security in SSBee 110
4.1 Translation of games and packages pseudocode to SSBee language . 111

4.1.1 Game compositions . 115
4.1.2 Key package . 122
4.1.3 Log package . 126
4.1.4 Other packages . 131

4.2 Towards verification of Lemma C.2 132
4.2.1 Oracle DHEXP . 134
4.2.2 Oracle SET . 138
4.2.3 Oracles GET, XPD, and XTR 140
4.2.4 Invariance of state relations 141
4.2.5 One-sided invariants and invariant bubbling 144

4.3 Cheat sheet of verification techniques for SSBee users 147
4.4 Future vision for SSBee . 150

5 Salted Oracle Diffie-Hellman Assumption Analysis 154
5.1 Security games . 156
5.2 Security reduction . 158

5.2.1 Proof of Lemma 5.1 . 185
5.2.2 Proof of Lemma 5.3 . 186
5.2.3 Proof of Lemma 5.4 . 186

References 188

7

1 Introduction

Transport Layer Security (TLS) is a widespread protocol on the Internet that establishes
a secure authenticated channel between Internet users. After many vulnerabilities,
exploits and attack proof-of-concepts were reported for earleir versions of TLS
(SSL X.0, TLS 1.x, TLS 1.2), TLS working group at IETF started standardization
process of TLS 1.3 in 2014. In February 2015, IETF published an information
RFC with a list of known attacks on TLS/SSL, including renegotiation attacks
[CVE09], downgrade attacks (FREAK [BBDL+15], Logjam [ABD+15]), cross-
protocol attacks (DROWN [ASS+16]), padding oracle vulnerabilities of constructions
based on CBC mode (BEAST [AP13], POODLE), web cookie recovery when data
compression in place (CRIME) and HTTP compression (BREACH), etc. The new
Internet security standardization brought security concerns upfront and benefitted
from results in cryptographic research and community as well as attacks found by
automated tools. Therefore, security researchers and cryptographers contributed to
the standardization by analyzing early drafts as well as latest version of TLS 1.3 on
paper ([DFGS20, BDLE+21, Bla18, FG17, DG19]) and with automated tools (such
as Tamarin [CHH+17, CHSvdM16] as well as CryptoVerif and ProVerif [BBK17])
and gave feedback through the public mailing list of IETF.

1.1 Symbolic model vs computational model

Security analysis of cryptographic protocols (such as ones appeared in TLS 1.3
standardization drafts) can be roughly divided into two groups of computational and
symbolic models. Analysis performed with automated tools such as Tamarin [BCDS22]
and ProVerif [Bla16] are in the symbolic model and roughly model cryptography as a
black-box. In the symbolic model, attackers can not break cryptography but can read,
write, delete, intercept messages in the network (Dolev-Yao mdoel), cryptographic
algorithms are considered to be mathematical functions, and bitstring messages to
be abstract terms, among other differences. This brings security guarantees up to the
level of abstractions used in the model. Symbolic tools help with modeling security
properties of the protocols built out of cryptographic primitives and automatically
finding complex attacks that are difficult for humans to find. (See 18-message attack
on post-handshake client authentication found by Tamarin [CHH+17].)

Although symbolic models can be extended to consider other properties of cryp-
tographic primitives and algebraic operations (e.g. finite field operations), extensive
and more complex models come with the risk of nontermination of the tools due to
undecidable nature of the problem and a huge search space. It is worth mentioning
that recent improvements in these tools and new symbolic models for signatures
[JCCGS19], hash functions [CCD+23], Authenticated Encryption with Associated
Data (AEAD) [CDJZ23], and prime and nonprime-ordered groups [CJ19] have led to
discovery of more attacks in more extensive models even beyond Dolev-Yao model.

On the other hand, symbolic tools are not suitable for reduction-based analysis
that is usually performed by cryptographers on paper. Reduction-based analysis
used by cryptographers considers computational model which restricts the compu-

tational resources of the adversary. Namely, cryptographers consider adversaries to
be probabilistic polynomial-time algorithms who can not solve hard computational/-
mathematical problems and build protocols and schemes that any successful exploit of
their security goals imply an efficient algorithm (achieved through security reductions)
for solving these hard problems. (cf. idealized adversaries in symbolic model who
can not break any cryptography) Security guarantees provided by the computational
model are stronger than the symbolic model but is much more difficult to produce and
verify by humans. We refer the reader to [Bla12] for a more detailed comparison of
symbolic and computational model. At the end of the day, both types of analysis are
necessary for real-world protocols to achieve protection against known attacks and
build more confidence for the lifetime of the protocol. 1

1.2 State-separating proofs (SSP) framework

The cryptography community has developed many proof frameworks in computational
model for analyzing of complex cryptographic protocols, avoiding mistakes in security
reductions, and reducing the gap with formal verification tools. State-separating
proofs (SSP) [BDLF+18, Koh23] is one of compositional frameworks in cryptography
among Universal Composability [Can00] introduced by Ran Canetti for composition
of key exchange protocols and symmetric key encryption, Abstract Cryptography
[MR11] by Maurer and Renner for a top-down and axiomatic approach to security
definitions, Constructive Cryptography [Mau11] by Maurer as an application of
Abstract Cryptography to cryptographic primitives as well as educational purposes,
etc. In addition to TLS 1.3 key schedule and key exchange security, SSP has been
used for cryptographic analysis of Message Layer Security (MLS) [BCK21] and Yao’s
garbling scheme [BO21]. SSP, inspired by the previous frameworks and process
algebra, allows modular security analysis. SSP requires proper decomposition of
monolithic code-based Bellare-Rogaway-style security games into a collection of
modular stateful components called packages. Analogous to classes in object-oriented
programming, SSP packages contain a set of oracles with their code-based definitions.
All oracles of the packages have access to and share the private state of the package such
as tables and variables. The package oracles, though, are exposed to other packages as
the package output interface. Packages also require a set of oracles for their operation
as their input interface, which their oracles call and depend on. Security games are
defined as composition of packages and naturally induce a call graph as a directed
acyclic graph. In contrast to experiment-based security definitions, adversaries interact
with oracles exposed by SSP games and their success probability in different games
is analyzed. Security proofs then consist of two types of steps: reduction and game

1As described by [BBB+19], symbolic and computational models provide confidence in different
levels of abstraction and different scopes of the real world implementation. Symbolic model scope is
larger with higher level of abstraction (hence lower confidence) while the computational model scope is
smaller with lower level of abstraction (hence higher confidence). Combined together, we get higher
assurance of the cryptographic system in the threat model. It also worths mentioning that program
verification of actual code implementation of cryptographic protocols is complementory to previous
approaches.

9

(code) equivalence. (We use the terms “code equivalence”, “game equivalence”,
and “functional equivalence” interchangeably.) Visualizing cryptographic reductions,
reduction steps are essentially cuts in the the game call graph by cutting out the security
game of a cryptographic primitive (to which we reduce security) from the call graph
of enclosing security game and leaving the rest packages as the reduction package.
Game equivalence steps show that input-output behavior of two games are the same or,
in other words, they are functionally equivalent. (i.e. they are indistinguishable even
by an unbounded adversary) Any SSP proof has at least two code equivalence steps
to show that the real (ideal) monolithic version of the game (before decomposition
into packages) is equivalent to the real (ideal) modular version of the game (after
decomposition into packages). In Section 2.1, we formally define SSP and give a
security reduction in SSP as an example. The example reduces IND-CCA security of
a hybrid public key encryption scheme (KEM-DEM paradigm) by Cramer and Shoup
[CS98].

1.3 Formal verification in the computational model

Several formal verification tools exist for cryptographic analysis in computational
model, such as CryptoVerif, EasyCrypt, ProofFrog, and SSBee. CryptoVerif [BJ23]
is one of these tools and its input language is very similar to ProVerif, which
allows to directly describe protocols and prove properties about them by reducing to
computational assumptions. EasyCrypt [BGHB11] is an interactive theorem prover
focusing on verification of security reductions in code-based game-playing proofs.
EasyCrypt uses a language closer to how cryptographers use to define their security
games. Based on probabilistic relational Hoare logic [BGZB09], EasyCrypt has
strong foundations for reasoning about probabilistic security games and probability
distributions they induce. However, as a interactive theorem prover, it still needs
significant interaction with the user to guide through each step of the proof. ProofFrog
[EMS25, Eva24] is an automated tool for verifying cryptographic hybrid arguments
and unlike EasyCrypt, it does not need much interaction with the user to prove security
reductions. In fact, the user only needs to define security games, reductions, and
security assumptions and ProofFrog can identify required hybrid games and perform
automatic game transformations and verify the real game can be reached from the
ideal game through several game hops.

SSBee [BEW25] is a novel toolchain and at the time of writing this thesis is
being developed by Chris Brzuska, Christoph Egger, and Jan Winkelmann. SSBee is
designed to automate proof steps in SSP framework (reductions and game equivalence).
SSBee defines a new language for the user to write the code of their packages, security
games as composition of packages, security proofs including real and ideal games,
assumptions, and intermediary (hybrid) games for game-hopping proofs with an
indication of game hop types (i.e. reductions or game equivalence) and relevant hints.
SSBee compiler performs a type checking on all input files (particularly oracle codes)
and algorithmically checks SSP-style reduction steps that comes for free as a result
of formalization effort in SSP. It then verifies game equivalence steps by compiling
oracle codes to SMT-LIB language and using a Satisfiability Modulo Theory (SMT)

10

solver to verify relevant proof obligations. SSBee needs minimal interaction from the
user by requiring the user to state some hints for the verification of code equivalence
steps. These hints are essentially state relations (between the games to be proved
equivalent) and are called “invariants”. SSBee tries to prove these hints too while
using them for other code equivalence proof obligations. We illustrate invariants
together with other key concepts in SSBee in Section 2.5 using the same formalization
of KEM-DEM example in SSP explained in Section 2.1. Section 2.5 also presents a
tutorial on verification of KEM-DEM security reduction in SSBee.

In addition to SSBee, SSProve [HRM+21] is a formalization effort of SSP in Rocq
interactive theorem prover [Roc25]. SSProve has stronger formal foundations as a
result of being based on Rocq but requires more interaction with the user while SSBee
uses SMT solvers to automate some proof steps with minimal interaction with the
user. Dupressoir, Kohbrok, and Oechsner [DKO21] formalized SSP in EasyCrypt
with a natural correspondence of SSP packages with EasyCrypt modules. They derive
a formal security proof of Cryptobox family of public-key authenticated encryption.

Compared to EasyCrypt, SSBee has limited features, such as limited support
for randomness samplings and probability distributions, which make automatization
simpler with native support for SSP proofs. When compared to ProofFrog, SSBee
has no support for automatic game transformation and any two equivalent games that
can be transformed to each other using code transformation (i.e. no computational
game hop) shall be proved as a separate code equivalence step or as a reduction to two
statistically equivalent games. 2 However, reductions come for free as result of proper
formalization in SSP. (SSBee does not directly support statistical game equivalence
due to lack of support for probability distributions. Refer to Section 5, though, for an
example of an effort to formalize a statistical hop in SSBee.)

1.4 TLS 1.3 Key Schedule Security

Early drafts as well as latest version of TLS 1.3 have been analyze in computational
model on paper. DFGS [DFGS20] analyzed handshake of TLS 1.3 in each of three key
exchange modes supported in isolation. (We introduce key exchange modes in Section
3.) Egger [Egg22] analyzed key exchange security of TLS 1.3 standard [Res18] in its
latest version using state-separating proofs framework (SSP) and reduce the security of
key exchange to that of key schedule. Key schedule is at the core of TLS 1.3 standard
handshake protocol which derives all keys required for encryption and authentication
of handshake as well as record layer messages 3 given the pre-shared key (PSK) and/or
Diffie-Hellman (DH) secret key. Key schedule security requires that generated keys are
pseudorandom and unique if at least one of the input key material (PSK or DH secret)
were honest. (not compromised by the adversary) Brzuska, Delignat-Lavaud, Egger,
Fournet, Kohbrok, Kohlweiss (BDEFKK) [BDLE+21] have reduced TLS 1.3 standard
key schedule security to security assumptions of primitives used in the protocol (i.e.

2It is, though, an interesting line of research to integrate the tools for more automatization of game
equivalence.

3It also generates exporter keys to be used by the application layer.

11

collision resistance of SHA series hash functions, (dual) pseudorandomness and
pre-image resistance of HMAC, and Salted Oracle Diffie-Hellman (SODH)). This
approach (together with concepts from SSP) has made the key exchange proof modular
and composable, considering the standard being over 100 pages. Moreover, modeling
of BDEFKK captures all key exchange modes of TLS 1.3 at the same time. BDEFKK
also prove, in the same model, pseudorandomness and uniqueness of resumption PSKs
computed by the key schedule from resumption master secret in the previous session,
in contrast to analysis of DFGS who do not model session resumption. We give an
overview of the TLS 1.3 key schedule and security analysis in Section 3.

1.5 Original Research Questions

Considering the size and complexity of their proof, thesis started with the goal to
determine whether SSBee as a new automated tool can be used for verification of TLS
1.3 key schedule security of [BDLE+21] and if so, present a machine-checked proof
of the analysis. We were also interested in possible new features for SSBee and finding
bugs from the tool as well as mechanisms to make SSBee more user friendly as a
tool in a working cryptographer’s toolbox. Moreover, it was unknown whether the
analysis as is can be modeled in the tool and already existing techniques in the proof
and SSBee suffice for verification or additional ideas are needed for both modeling
and verification. Furthermore, in case of a failure in verification, we were interested in
finding obstacles to automatization of the proof and how the proof can be made more
SMT-prover friendly (or even what improvements to SSBee are needed). Finally, we
wanted to complement state relations described in one of the major code equivalence
game hops of [BDLE+21] and possibly find all missing or imprecise state relations (if
any) described in the paper.

1.6 Contributions

This thesis take steps towards formal verification of TLS 1.3 key schedule security
reduction of [BDLE+21] in SSBee. BDEFKK prove two subtle game equivalence steps,
which, respectively, introduce a mapping package, followed by security reductions
to modular assumptions, and remove the mapping from the output keys. We explain
the intuition and details of mapping package in Section 3. Nevertheless, BDEFKK
import a new proof technique (state relations proved to be invariants) from program
verification to cryptography to prove these two code equivalence steps. (The same
technique is used by SSBee to discharge proof obligations for game equivalence steps.)
Although the resulting proof is rigorous, performing code analysis on a per-and-paper
proof is error-prone, lengthy, and hard-to-verify for humans. 4

We focus on Lemma C.2 of [BDLE+21] in this thesis and in order to verify the
code equivalence in SSBee, we need to define security games and packages in the
language of SSBee. Limited features of SSBee language at the time of writing this
thesis, such as no support for loops or recursive data types, brought challenges but did

4The proof of lemma C.2 takes 10 pages. Proof of Lemma C.5 takes up 5 pages.

12

not prevent the formalization process. For each of these cases that direct translation
of SSP code to SSBee language is not possible, we explain our encoding and argue
its soundness. Moreover due to the size of security games in key schedule, we even
automatize generation of call graph of security games (essentially composition of
packages) with a script. After preparing the security games and packages, we move to
writing the security proof and make progress with one subgoal of code equivalence at
a time. During the verification process, we speed up the SMT solver and make proof
debugging easier by introducing additional lemmata and invariants. SSBee allows us
to also prove these additional lemmata. We also discovered and proved "Invariant
bubbling" theorem that roughly states properties proved to be correct in subgames
are automatically transferred (bubbled up) to enclosing games. Ironically, it allows to
prove stronger claims in enclosing games with less effort. 5 This technique can save
time both from the proof writer and SMT solver, although is not yet implemented as a
formal technique in SSBee but it is our vision to add it in the future. We apply the
theorem to an important subgame appearing in the key schedule security game.

Furthermore, we encountered some limitations of cvc5 (the SMT solver currently
supported by SSBee) in specific problems, such as universal quantifier instantiation.
We mention one case explicitly and our workaround for the issue both in Sections 2.5
and 4. It is, though, still not clear what other limitations they might bring to the table
and it is an interesting research question to find more corner cases. (possibly over
other code equivalence steps in the paper.)

Finally, we can confirm the claims in analysis of BDEFKK are plausible and upto
our current status of verification perfectly correct except for missing minor details.
However, we found missing checks causing trivial attacks as a side-product of formal
verification in the code of some packages of the security model. We, though, confirmed
that these checks are indeed included in the TLS 1.3 standard preventing the attacks.

BDEFKK introduce Salted Oracle Diffie-Hellman (SODH) assumption in their
TLS 1.3 key schedule security analysis. SODH is a new variant of Oracle Diffie-
Hellman assumption, first appeared in the analysis of DHIES encryption scheme by
Abdalla, Bellare, and Rogaway [ABR01]. BDEFKK, however, only mention without
proof that SODH can be reduced to computational Diffie-Hellman (CDH) assumption
in the random oracle model. In Section 5, we analyze SODH assumption in the random
oracle model and partially reduce to strong Diffie-Hellman assumption (SDH), which
is the same as CDH except the adversary has additionally access to a DDH-like 6

oracle. Abdalla, Bellare, and Rogaway [ABR01] also presented SDH in their analysis
of DHIES and argued plausibility of the assumption in the generic group model.

1.7 Outline

Section 2 formally defines SSP with the running example of the KEM-DEM paradigm
and builds up the foundations with key concepts from SSBee and SMT solvers for a

5Such properties are stronger because they hold in all enclosing games that contain the packages
composed exactly in the same way as in the given subgame.

6decisional Diffie-Hellman

13

tutorial on verification of KEM-DEM CCA security reduction in SSBee. Section 3
discusses the necessary background from TLS 1.3 handshake protocol, supported key
exchange modes, key schedule structure, simulation-based security definition of key
schedule, and conclude with an overview of key schedule security reduction. Section
4 reports the verification process and highlights proof/debugging techniques/tips for
future users of SSBee. Finally, Section 5 presents the analysis of SODH assumption.

14

2 Preliminaries

This section begins with formal definition of State Separating Proofs (SSP) framework
and uses KEM-DEM as a running example. We then present an overview of SMT
solvers and SMT-LIB language and introduce key concepts from SSBee using the
KEM-DEM example. We demonstrate how the KEM-DEM security reduction can
be verified in SSBee. The material in this chapter lay down the cryptography and
verification background required for the following chapters of the thesis.

2.1 State Separating Proofs (SSP)

State Separating Proofs (SSP) framework [BDLF+18] is a compositional framework in
cryptography and a variant of code-based game-playing proofs framework introduced by
Bellare and Rogaway (BR) [BR04]. Traditionally, security definitions in cryptography
analyze the winning probabiliy of an adversary interacting with a challenger in a
security game, known as game-playing definitions. Usually the adversary is also given
access to some oracles that it can freely query. Bellare and Rogaway formalized this
setting in their seminal work such that security games can be expressed concretely
with their pseudocode, and, hence, the name of framework code-based game-playing
definitions or proofs. (They additionally proved the indeed fundamental lemma of
game-playing which relates the advantage of an adversary with a bad event happening
in the game.)

Essentially, in BR-style games, the challenger experiment is expressed with its
pseudocode as initialization and finalization procedures. More importantly, oracles
that adversary has access to are also defined as procedures with their pseudocode and
clear input and output interfaces. Then the advantage of adversary is analyzed when it
is interacting with a real or an ideal game.

In contrast to BR-style games, SSP wishes to defines games as a collection of
oracles exposed to the adversary, requiring challenger, initialization, and finalization
functionalities to be part of oracles. We then analyze the advantage of adversary
interacting with the the oracles of real and ideal games. SSP defines packages for the
sake of formalization.

Definition 2.1 (Packages). A package 𝑀 is a collection of oracles (algorithms) with
their pseudocodes that can share some private internal state of the package while
modifying and reading from the state upon calls to their oracles but can’t expose access
to their state unless through oracle calls. Packages have a clear ouput interface out(𝑀),
a set of oracle signatures they expose to other packages and a clear input interface
in(𝑀), a set of oracle signatures they depend on for their functionality (possibly
exposed by other packages).

Remark. We refrain from precisely defining pseudocodes and package languages.
Refer to the work of [BDLF+18] for these definitions and other properties they prove
about packages and their compositions when they introduce SSP. For the sake of this
thesis and many usecases in cryptography, one can think of the pseudocode langauge

15

has statements for randomness samplings from distributions and usual control flow
statements as well as data storage mechanisms, such as tables, sets, lists, variables, etc.

Packages and classes in object oriented programming have a close relationship.
Classes consists of several methods and have a clear output interface for the methods
they expose to other classes and a clear dependency on methods they call from other
classes. Notice that package states are similar to class private fields that can not be
shared with other packages (classes) except through oracle (method) calls. Therefore,
they are state separating.

Definition 2.1 brings restrictions and simaltanuously possibility of package com-
positions. In a quick comparison with BR games, oracles can be thought of procedures
and packages can be considered games without initialization and finalization code,
which is very rare outisde of SSP world where adversaries interact with a challenger
who execute code before and after calling the adversary. However, SSP packages lift
any restrictions on type of oracles and allow package consumers to call any oracles
in any order. Therefore, oracles should take care of the possibility of being called in
any order and respond accordingly. On the other hand, packages can be composed,
analogous to classes. This enables modulairty and inspired by SOILD object oriented
design principles, one can design packages with single responsiblity.

Definition 2.2 (Package composition). Package 𝑀 ◦ 𝑀′ (also 𝑀 → 𝑀′) with output
interface out(𝑀) and input interface in(𝑀′) is the sequential composition of packages
𝑀 and 𝑀′ by inlining code of callee oracles of 𝑀′ in the code of caller oracles
of 𝑀 provided that the input interface of 𝑀 matches output interface of 𝑀′ (i.e.
in(𝑀) ⊆ out(𝑀′)). Package 𝑀 |𝑀′ or 𝑀

𝑀 ′ with output interface out(𝑀) ∪ out(𝑀′)
and input interface in(𝑀) ∪ in(𝑀′) is the parallel composition of packages 𝑀 and 𝑀′
by taking union of state variables and oracles of 𝑀 and 𝑀′ provided that the output
interfaces and state variables of 𝑀 and 𝑀′ are disjoint.

Figure 1a shows graphical representation of a sequential composition of packages𝑀
and𝑀′where out(𝑀) = {SET,EVAL}, in(𝑀) = out(𝑀′) = {GET}, and in(𝑀′) = ∅.
Figure 1b shows a parallel composition of packages 𝑀 and 𝑀′ with similar interfaces.
The main idea is to allow package compositions to induce a call graph similar to
dependency graphs of classes.

𝑀 𝑀 ′GETSET
EVAL

(a) Sequential composition 𝑀 ◦ 𝑀 ′

(also 𝑀 GET→ 𝑀 ′)

𝑀

𝑀 ′

GETSET
EVAL

GET

(b) Parallel composition 𝑀
𝑀′

Figure 1: Package compositions

Sequential compositions simply mix the state of packages (if they are disjoint) and
inline the code of callee oracles in the caller oracles. Figure 2 shows an example of
code inlining as a result of sequential composition. Parallel composition also mix

16

the state of packages (if they are disjoint) but combine the output interfaces of the
packages if they do not overlap.

𝑀

State

𝑐 : challenge

...

EVAL(𝑚)
𝑘 ← GET()
return 𝑘 ⊕ 𝑚
...

𝑀′

State

𝑘1 : left key
𝑘2 : right key

...

GET()
return 𝑘1 | |𝑘2
...

𝑀 ◦ 𝑀′

State

𝑘1 : left key
𝑘2 : right key
𝑐 : challenge

...

EVAL(𝑚)
𝑘 ← 𝑘1 | |𝑘2

return 𝑘 ⊕ 𝑚
...

Figure 2: Code inlining in sequential composition

Definition 2.3 (Identity package). An identity package ID𝑆 with a set of oracles 𝑆 is
package with input and output interfaces in(𝑀) = out(𝑀) = 𝑆 that forwards every
call to its exposed oracle 𝑂 ∈ 𝑆 to the corresponding oracle provided through its input
interface.

We usually describe complex package compositions by the call graph of the
packages without specifying the sequential or parallel composition. However, we
can formalize the call graph using the identity package. For example, an informal
package composition as in Figure 3b is formally a combination of sequential and
parallel composition described in 3a.

𝑀

𝑀 ′

IDSET

GETEVAL

SETSET

(a) Formal visualization of package

𝑀
𝑀 ′

GETEVAL

SET

(b) Informal visualization

Figure 3: Visualization of package 𝑀
IDSET
◦ 𝑀′ (also 𝑀

IDSET
→ 𝑀′)

Definition 2.4 (Games and adversaries). A game is a package 𝐺 such that in(𝐺) = ∅.
An adversary A playing in (or interacting with) a game 𝐺 is a package with an input
interface the same as output interface of the game (i.e. in(A) = out(𝐺)) and an output
interface out(A) = {run} where run() returns either 0 or 1.

17

Since games and composition of adversaries with games (A → 𝐺) are packages
with empty input interface, each of their oracles have a well-defined behaviour when
called. Therefore, we can analyze the probability of run() oracle of adversary
(composed with 𝐺) returning 1 denoted by Pr[1 = A → 𝐺].

Definition 2.5 (Adverserial advantage). Let 𝐺0 (real) and 𝐺1 (ideal) be two games
where out(𝐺0) = out(𝐺1). If A is an adversary such that in(A) = out(𝐺0) =
out(𝐺1), we read the adversary is against games 𝐺0 and𝐺1. We also define advantage
of an adversary against games 𝐺0 (real) and 𝐺1 (ideal) as follows:

Adv(A, 𝐺0, 𝐺1) = Adv(A, 𝐺𝑏) := | Pr
[︁
1 = A → 𝐺0]︁ − Pr

[︁
1 = A → 𝐺1]︁ |

Informally, we might read the advantage of adversary distinguishing the real game 𝐺0

and ideal game 𝐺1 (or game pair 𝐺𝑏) is Adv(A, 𝐺𝑏).

In the rest of the thesis, we often define pair of real and ideal games at the same
time using an idealization bit 𝑏 as a parameter for the game and packages in the
pseudocode of oracles. Nevertheless, games can have other parameters, such as a
security parameter 𝜆. Additionally, we are mostly dealing with concrete security
setting, in contrast to asymptotic setting [Rog06, BL12]. Namely, we concrelty relate
(bound) the advantages of adversaries in our security games to advatnages of new
adversaries in some security assumptions. We don’t explicitly refer to the security
parameter 𝜆 and prove the advantage is a negligible function of 𝜆 or adversaries being
polynomial time with respect to 𝜆. Instead we bound the advtange of adversaries
for example with the concrete number of queries to specific oracles. Running time
of reductions that construct new adversaries can be easily related to the original
adversaries using their pseudocode. Games will also have concrete parameters, such
as a specific hash function or group description, for which we have standard security
assumptions.

If the advantage of even unbounded adversaries (i.e. running in more than
polynomial time) when distinguishing two games 𝐺 and 𝐻 is zero, we call the games
to be code equivalent or functionally equivalent or perfectly indistinguishable and
denote it by 𝐺 𝑐𝑜𝑑𝑒≡ 𝐻.

Notice that literature sometimes refer to each of the terms code equivalent,
functionally equivalent, or perfectly indistinguishable in different scenarios, although
the end goal is the advantage of adversary being zero. [BDLF+18] chooses the term
“perfect indistinguishability” when the advantage is zero but “code equivalence” when
code of the oracles of the games can be transformed to each other using code inlining
or variable renaming. Therefore, code equivalence implies perfect indistinguishability.
Moreover, functional equivalence refers to the scenario when games do not have
exactly the same code (upto renaming) but have the same input-output behaviour. We
will interchangably use either of these terms for the same concept but benefit from the
“same input-output behaviour” interpretation in the rest of thesis and encourage the
reader to think about the “zero advantage under unbounded adversary” as such. We
will elaborate on this topic in Section 2.5.

18

Finally, Lemma 2.1 gives the sufficient conditions for a general reduction of a
complicated and complex security game pair 𝐺𝑏

𝑏𝑖𝑔
(usually a scheme or construction)

to a simpler security game pair 𝐺𝑏
𝑠𝑚𝑎𝑙𝑙

(usually a primitive). Therefore, to build an
adversary B against a pair of real and ideal primitive (small) games, it is enough to
decompose the more complex (big) real and ideal games into a reduction R and the
small games. Lemma 2.1 then guarantees if A can distinguish the big games, then
A → R can distinguish the small games.

Lemma 2.1 (Reduction). Let 𝐺𝑏
𝑏𝑖𝑔

and 𝐺𝑏
𝑠𝑚𝑎𝑙𝑙

be two game pairs, A be an adversary
against 𝐺𝑏

𝑏𝑖𝑔
, and R be a (reduction) package such that out(R) = out(𝐺𝑏

𝑏𝑖𝑔
), in(R) =

out(𝐺𝑏
𝑠𝑚𝑎𝑙𝑙
) and 𝐺𝑏

𝑏𝑖𝑔

𝑐𝑜𝑑𝑒≡ R → 𝐺𝑏
𝑠𝑚𝑎𝑙𝑙

for 𝑏 ∈ {0, 1}. Let B := A → R. Then, we
have

Adv(A, 𝐺𝑏
𝑏𝑖𝑔) = Adv(B, 𝐺𝑏

𝑠𝑚𝑎𝑙𝑙).

Proof.

Adv(A, 𝐺𝑏
𝑏𝑖𝑔) = | Pr

[︂
1 = A → 𝐺0

𝑏𝑖𝑔

]︂
− Pr

[︂
1 = A → 𝐺1

𝑏𝑖𝑔

]︂
|

= | Pr
[︁
1 = A → (R → 𝐺0

𝑠𝑚𝑎𝑙𝑙)
]︁
− Pr

[︁
1 = A → (R → 𝐺1

𝑠𝑚𝑎𝑙𝑙)
]︁
|

=∗ | Pr
[︁
1 = (A → R) → 𝐺0

𝑠𝑚𝑎𝑙𝑙

]︁
− Pr

[︁
1 = (A → R) → 𝐺1

𝑠𝑚𝑎𝑙𝑙

]︁
|

= | Pr
[︁
1 = B → 𝐺0

𝑠𝑚𝑎𝑙𝑙

]︁
− Pr

[︁
1 = B → 𝐺1

𝑠𝑚𝑎𝑙𝑙

]︁
|

= Adv(B, 𝐺𝑏
𝑠𝑚𝑎𝑙𝑙)

where the third equality (marked with star) follows from associativity of sequential
composition proved in Lemma 6 of [BDLF+18]. □

Modeling a computational game hop, for an adversary A and games 𝐺𝑏 where
𝑏 ∈ {0, 1}, if the advantage Adv(A, 𝐺𝑏) is bounded by or equal to another advantage
(as a result of reduction to a security assumption), we say games 𝐺0 and 𝐺1 are
computationally equivalent and write 𝐺0 𝑐𝑜𝑚𝑝

≈ 𝐺1.

2.1.1 Security definitions in SSP

Having defined adversaries and games, we now give indistinguishability against chosen
ciphertext attacks (IND-CCA) security definition of a public key encryption scheme Π
as an example of a security game in SSP. We will use this definition in Section 2.5. 7

A public-key encryption (PKE) scheme ΠPKE = (𝑔𝑒𝑛, 𝑒𝑛𝑐, 𝑑𝑒𝑐) consists of three
probabilistic algorithms: key generation 𝑔𝑒𝑛 that randomly samples a pair of public-key
and secret key (𝑝𝑘, 𝑠𝑘); encryption algorithm 𝑒𝑛𝑐 that given message 𝑚 and public
key 𝑝𝑘 , returns an encryption of 𝑚 under 𝑝𝑘; decryption algorithm 𝑑𝑒𝑐 that given
the secret key 𝑠𝑘 and ciphertext 𝑐, returns decryption of 𝑐 using 𝑠𝑘 . A PKE scheme

7We have adopted the following definitions and KEM-DEM proof from Section 4 of [BDLF+18]
with some modifications. For example, in recent papers with SSP, community has used idealization
parameters for key packages (keyed packages) for the sake of key idealization instead of idealization
parameters for key derivation packages (keying packages). We come back to this topic in Section 2.5.

19

is required to satisfy the correctness property: for any message 𝑚 from the message
space,

Pr
[︁
ΠPKE.𝑑𝑒𝑐(𝑠𝑘,ΠPKE.𝑒𝑛𝑐(𝑝𝑘, 𝑚)) = 𝑚; (𝑝𝑘, 𝑠𝑘) ←$ ΠPKE.𝑔𝑒𝑛()

]︁
= 1,

where the probability is over the randomness of ΠPKE.𝑒𝑛𝑐 and ΠPKE.𝑔𝑒𝑛.
In all games in the rest of the thesis, initial values of all variables and table entries

in the state of the games or packages is none or ⊥. We also denote randomized
assignments by←$ and regular assignments by←. Moreover, in case of an assertion
failure, the game aborts and the adversary notices this outcome.

Definition 2.6 (Public-key IND-CCA security game). Let ΠPKE be a PKE scheme. We
define PKE-CCA security game 𝐺𝑏,ΠPKE

PKE-CCA as following.

𝐺
𝑏,ΠPKE

PKE-CCA

Parameters

𝑏 : idealization bit
ΠPKE : PKE scheme

State

𝑝𝑘 : public key
𝑠𝑘 : secret key
𝑐 : challenge

PKGEN()
assert 𝑠𝑘 = ⊥
𝑝𝑘, 𝑠𝑘 ←$ ΠPKE.𝑔𝑒𝑛()
return 𝑝𝑘

PKENC(𝑚)
assert 𝑝𝑘 ≠ ⊥
assert 𝑐 = ⊥
if 𝑏 = 0 then
𝑐 ←$ ΠPKE.𝑒𝑛𝑐(𝑝𝑘, 𝑚)

else
𝑐 ←$ ΠPKE.𝑒𝑛𝑐(𝑝𝑘, 0 |𝑚 |)

return 𝑐

PKDEC(𝑐′)
assert 𝑠𝑘 ≠ ⊥
assert 𝑐 ≠ ⊥
assert 𝑐 ≠ 𝑐′

𝑚 ← ΠPKE.𝑑𝑒𝑐(𝑠𝑘, 𝑐′)
return 𝑚

A 𝐺
𝑏,ΠPKE

PKE-CCA

PKGEN
PKENC
PKDEC

run

Notice how the game (package) exposes three oracles PKGEN, PKENC, PKDEC
to the adversary and make assertions on the state variable 𝑝𝑘 ≠ ⊥ to enforce the
adversary to call PKGEN first and variables 𝑠𝑘 = ⊥ and 𝑐 = ⊥ respectively to prevent
the adversary from generating several key pairs or challenges. In the real game (𝑏 = 0),
the adversary receives an encryption of the message while in the ideal game (𝑏 = 1) it
only receives an encryption of an all-zeros string of the message length.

So far we have only defined security with a pair of real and ideal games and an
adversary’s advantage when distinguishing these games. However, another game-based
definitions involve search-based security notions where the adversary should output
a key, group element, a preimage, etc. instead of a single bit. Interestingly, one
can model these security notions with a CHECK oracle that returns different values
in the real and ideal games if the adversary queries the intended secret. Brzuska
and Lipäinen [BL24] explain search games in Appendix B of their work. They also
discuss how search games can be modeled as indistinguishability (decision) games.
For instance, see the one-way function security game using the CHECK oracle in
Section 3.1 of [BL24] or Square and Strong Diffie-Hellman security games (SqDH

20

and SDH) in Figure 34 of Section 2.5. Also, Kohbrok [Koh23] discusses other SSP
security modeling beyond real-vs-ideal paradigm, including search-based notions such
as existential unforgeability chosen ciphertext attacks (EUF-CMA), in Section 3.3 of
their thesis.

2.2 Paving the way for code equivalence

In the previous section, we mentioned that two games 𝐺 𝑙 and 𝐺𝑟 are said to be code
equivalent denoted by 𝐺 𝑙 𝑐𝑜𝑑𝑒≡ 𝐺𝑟 if advantage of any adversary A against them is
zero. In this section, we prove the fundamental theorem of code equivalence that gives
a general recipe for proving code equivalence of two games.

To show code equivalence, we need to prove any adversary (even unbounded)
has zero advantage when distinguishing games 𝐺 𝑙 and 𝐺𝑟 . Therefore, we prove the
adversary can not distinguish the outputs from the oracles of the games. Precisely, we
show the same oracles from both games return identical outputs if the adversary queries
the oracles with identical inputs. Since the oracles are probabilistic, considering
probabilistic Turing machines as the computational model, we assume the games
choose their random choices from the same randomness tape.

We formalize these ideas as follows and refer to 𝐺 𝑙 and 𝐺𝑟 as left and right games,
respectively. We analyze the probability of adversaryA returning 1 against the games
𝐺 𝑙 and 𝐺𝑟 (i.e. Pr

[︁
1 = A → 𝐺 𝑙

]︁
and Pr[1 = A → 𝐺𝑟]). For 𝑖 ≥ 1, define random

variables 𝑆𝑙
𝑖

(𝑆𝑟
𝑖
) as the state of game 𝐺 𝑙 (𝐺𝑟) after the 𝑖-th query, 𝑆A→𝐺𝑙

𝑖
(𝑆A→𝐺𝑟

𝑖
)

as the state of the adversary against 𝐺 𝑙 (𝐺𝑟) after the 𝑖-th adversary invocation,
𝑂𝑙
𝑖
∈ out(𝐺 𝑙) (𝑂𝑟

𝑖
) as the oracle called by the adversary on the 𝑖-th query, 𝑋 𝑙

𝑖
(𝑋𝑟

𝑖
)

as the input to oracle 𝑂𝑙
𝑖

(𝑂𝑟
𝑖
) chosen by the adversary on the 𝑖-th query, 𝑌 𝑙

𝑖
(𝑌 𝑟
𝑖
) as

the output of oracle 𝑂𝑙
𝑖

(𝑂𝑟
𝑖
) on the 𝑖-th query, and 𝐵𝑙

𝑖
∈ {⊥, 0, 1} as the output of

adversary. We also define 𝑌 𝑙0 and 𝑌 𝑟0 to be ⊥, i.e. none. As previously mentioned,
initial game states 𝑆𝑙0 and 𝑆𝑟0 in SSP assign the value ⊥ to all variables or table entries.
Let 𝑆A0 be a fixed initial state of the adversary. We consider the game oracles and
adversaries as state transformers to express relations between the random variables as
follows:

(𝑌 𝑙𝑖 , 𝑆𝑙𝑖) := 𝑂𝑙
𝑖 (𝑋 𝑙𝑖 , 𝑆𝑙𝑖−1; 𝑅𝑙𝑖)

(𝑂𝑙
𝑖 , 𝑋

𝑙
𝑖 , 𝑆
A→𝐺𝑙

𝑖 , 𝐵𝑙𝑖) := A(𝑌 𝑙𝑖−1, 𝑆
A→𝐺𝑙

𝑖−1 ; 𝑅A→𝐺
𝑙

𝑖)

The first equation considers the game oracles as the game state transformers and states
a relation between the inputs and outputs of the oracles. Given the previous state 𝑆𝑙

𝑖−1
of the left game after the (𝑖 − 1)-th query and the input 𝑋 𝑙

𝑖
chosen by the adversary

with explicit randomness string 𝑅𝑙
𝑖
, the oracle 𝑂𝑙

𝑖
computes the next state of the game

𝑆𝑙
𝑖

and output 𝑌 𝑙
𝑖

that is returned to the adversary. The second equation considers the
adversary as its own state transformer. Namely, given its previous state 𝑆A→𝐺𝑙

𝑖−1 after
the first 𝑖 − 1 queries and the output 𝑌 𝑙

𝑖−1 of the oracle 𝑂𝑙
𝑖−1 on the previous query 𝑋 𝑙

𝑖−1
and explicit randomness string 𝑅A→𝐺𝑙

𝑖
, the adversary returns its new state 𝑆A→𝐺𝑙

𝑖
,

its chosen oracle name 𝑂𝑙
𝑖
, input 𝑋 𝑙

𝑖
to query the oracle 𝑂𝑙

𝑖
on, and output bit 𝐵𝑙

𝑖
. If

21

𝐵𝑙
𝑖
≠ ⊥, the interaction with the game stops and the adversary returns 𝐵𝑙

𝑖
. We consider

assertional failures and aborts in oracles as special output values abort that cause
the game to stop and disallow any further adversary interaction. Similar equations
are defined for the right game with superscript 𝑟 for all the random variables. Notice
that the adversary A and oracles 𝑂𝑙

𝑖
are deterministic with the explicit randomness

strings passed as input. In the rest of the section, we might replace 𝑙 and 𝑟 with 𝐺
when discussing both left and right or an arbitrary game 𝐺. We want to highlight that
any adversary randomness string sequence 𝑅A→𝐺

𝑖
together with a game randomness

string sequence 𝑅𝐺
𝑖

(for example 𝑅𝑙
𝑖

or 𝑅𝑟
𝑖
) induce a concrete executation trace and a

transcript of interaction between the adversary and the game oracles that ends with an
output returned by the adversary.

With this formalization, one can write

Pr
[︁
1 = A → 𝐺 𝑙

]︁
=
∑︁
𝑞≥1

Pr
[︁
1 = A → 𝐺 𝑙 ∧ 𝐵𝑙𝑞 ≠ ⊥

]︁
=
∑︁
𝑞≥1

Pr
[︁
𝐵𝑙𝑞 = 1

]︁
.

Observe that event 𝐵𝑙𝑞 ≠ ⊥ occurs if the adversary returns the bit 𝐵𝑙𝑞 on the 𝑞-th
invokation (i.e. after 𝑞 − 1 oracle queries) which prevents any further oracle queries
and interaction with the game; therefore, for all 𝑞, events 𝐵𝑙𝑞 ≠ ⊥ are all disjoint.
We then wish to prove Pr

[︁
𝐵𝑙𝑞 = 1

]︁
= Pr

[︁
𝐵𝑟𝑞 = 1

]︁
for all 𝑞 in order to conclude

Pr
[︁
1 = A → 𝐺 𝑙

]︁
= Pr[1 = A → 𝐺𝑟].

We achieve this result by proving a stronger claim via an induction on 𝑞 in Lemma
2.3. To prove the induction, though, we need to define state relation 𝐼 and bijective
randomness mapping 𝑀 . A (game) state relation 𝐼 is a subset of 𝑆𝐺𝑙 × 𝑆𝐺𝑟 where 𝑆𝐺𝑙

and 𝑆𝐺𝑟 are the set of all possible states of the left and right games, respectively. A
pair of game states in a state relation 𝐼 usually have a meaningful correspondence
between them. For example, a relation between the states of two games may state that
the public and secret keys are the same. See Definition 2.13 for an example of a state
relation between the games Mod𝑏,0 and 𝐺𝑏,ΠPKE

PKE-CCA introduced in the next section. For
every oracle 𝑂 ∈ out(𝐺 𝑙) = out(𝐺𝑟), randomness mapping 𝑀𝑂 : 𝑅𝐺𝑙

𝑂
−→ 𝑅𝐺

𝑟

𝑂
is a

bijective function where 𝑅𝐺𝑙

𝑂
and 𝑅𝐺𝑟

𝑂
are the set of all possible randomness strings

consumed by oracles 𝑂𝑙 and 𝑂𝑟 , respectively.

Definition 2.7 (Invariant state relation). Let𝐺 𝑙 (left) and𝐺𝑟 (right) be two games with
the same set of oracles (i.e. out(𝐺 𝑙) = out(𝐺𝑟)). For each oracle oracle 𝑂 ∈ out(𝐺 𝑙),
let 𝑀𝑂 be a randomness mapping between randomness strings consumed by 𝑂. Let
𝑂𝑙 be the implementation of oracle 𝑂 in the left game and 𝑂𝑟 be the implementation
of oracle 𝑂 in the right game. Denote the initial states of left and right games 𝐺 𝑙 and
𝐺𝑟 by 𝑆𝑙0 and 𝑆𝑟0, respectively. A state relation 𝐼 is said to be invariant if the following
two conditions hold for all oracles 𝑂 ∈ out(𝐺 𝑙), inputs 𝑥 ∈ inputs(𝑂), states of left

22

and right games 𝑆𝑙old and 𝑆𝑟old, and randomness string 𝑅 consumed by 𝑂:

(𝑆𝑙0, 𝑆
𝑟
0) ∈ 𝐼 (1)

⎛⎜⎜⎜⎝
(𝑆𝑙old, 𝑆

𝑟
old) ∈ 𝐼∧

(𝑦𝑙 , 𝑆𝑙new) ← 𝑂𝑙 (𝑥, 𝑆𝑙old; 𝑅)∧
(𝑦𝑟 , 𝑆𝑟new) ← 𝑂𝑟 (𝑥, 𝑆𝑟old;𝑀𝑂 (𝑅))∧

𝑦𝑙 ≠ abort ∧ 𝑦𝑟 ≠ abort

⎞⎟⎟⎟⎠ =⇒ (𝑆
𝑙
new, 𝑆

𝑟
new) ∈ 𝐼 (2)

In Lemma 2.2, we justify why such state relations are called invariant. Essentially,
for such state relations, initial states of the two games are in relation and upon any
oracle query 𝑥, states of the games continue to be in relation. Looking forward, this
property is at the core of proving code equivalence of left and right games because
the states of such games have a specific correspondence that we describe as a state
relation and prove to be invariant. For instance, public and secret keys in the left game
should be the same as the public and secret keys in the right game. However, notice
that the randomness strings consumed by the left and right oracles shall be related
via the bijective mapping and can not be arbitrary. We highlight the importance of
bijection in the proof of Theorem 2.3.

Next, we introduce the concept of an execution trace. In particular, for fixed
adversary randomness and fixed randomness of the left game, we obtain a sequence
of oracle inputs and outputs. We want to argue that this sequence stays identical
when running the right game on the same sequence of adversarial queries as well
as mapped game randomness. Towards this goal, we define the concept of a left-
game-induced execution trace which is an execution trace obtained by (a) keeping the
adversarial queries induced by the execution trace of the left game, but (b) replacing
the oracle outputs of the left game by oracle outputs of the right game (using mapped
randomness).

Definition 2.8 (Left-game-induced sequence). Let 𝑆𝑙0 and 𝑆𝑟0 be the initial states of
left and right games 𝐺 𝑙 and 𝐺𝑟 , 𝑆A0 be the initial state of adversary, {𝑅A→𝐺𝑙

𝑖
} and

{𝑅𝑙
𝑖
} be fixed randomness string sequences, and for each oracle 𝑂 ∈ out(𝐺 𝑙), 𝑀𝑂

be a randomness mapping. Then the left-game-induced state (oracle, input, output)
sequence 𝑆𝑙→𝑟𝑞 (𝑂𝑙→𝑟

𝑞 , 𝑋 𝑙→𝑟𝑞 , 𝑌 𝑙→𝑟𝑞) is defined recursively as follows:

(𝑌 𝑙→𝑟𝑞 , 𝑆𝑙→𝑟𝑞) := 𝑂𝑙→𝑟
𝑞 (𝑋 𝑙→𝑟𝑞 , 𝑆𝑙→𝑟𝑞−1 ;𝑀𝑂𝑙→𝑟

𝑞
(𝑅𝑙𝑞))

(𝑂𝑙→𝑟
𝑞 , 𝑋 𝑙→𝑟𝑞 , 𝑆A→𝐺

𝑟

𝑞 , 𝐵𝑙→𝑟𝑞) := A(𝑌 𝑙→𝑟𝑞−1 , 𝑆
A→𝐺𝑟

𝑞−1 ; 𝑅A→𝐺
𝑙

𝑞)

where 𝑌 𝑙→𝑟0 := ⊥ and 𝑆𝑙→𝑟𝑞 := 𝑆𝑟0 and 𝑆A→𝐺𝑟

0 := 𝑆A0 . We might also refer to the right
game randomness sequence defined as 𝑅𝑟𝑞 := 𝑀𝑂𝑙→𝑟

𝑞
(𝑅𝑙𝑞).

Definition 2.9 (Same-output property). Let 𝐼 be a state relation between states of the
left and right games 𝐺 𝑙 and 𝐺𝑟 . Oracles of 𝐺 𝑙 and 𝐺𝑟 are said to satisfy same-output
property if for for all oracles 𝑂 ∈ out(𝐺 𝑙), inputs 𝑥 ∈ inputs(𝑂), states of left and

23

right games 𝑆𝑙old and 𝑆𝑟old, and randomness string 𝑅 consumed by 𝑂,

⎛⎜⎝
(𝑆𝑙old, 𝑆

𝑟
old) ∈ 𝐼∧

(𝑦𝑙 , 𝑆𝑙new) ← 𝑂𝑙 (𝑥, 𝑆𝑙old; 𝑅)∧
(𝑦𝑟 , 𝑆𝑟new) ← 𝑂𝑟 (𝑥, 𝑆𝑟old;𝑀𝑂 (𝑅))

⎞⎟⎠ =⇒ 𝑦𝑙 = 𝑦𝑟 .

Lemma 2.2. Let 𝑆𝑙0 and 𝑆𝑟0 be the initial states of left and right games 𝐺 𝑙 and 𝐺𝑟

whose oracles satisfy the same-output property, 𝑆A0 be the initial state of adversary,
{𝑅A

𝑖
} and {𝑅𝑙

𝑖
} be fixed randomness string sequences, 𝐼 be an invariant state relation,

and for each oracle 𝑂 ∈ out(𝐺 𝑙), 𝑀𝑂 be a randomness mapping. Then, for all
𝑞 ≥ 1, (𝑆𝑙𝑞, 𝑆𝑙→𝑟𝑞) ∈ 𝐼, 𝑋 𝑙𝑞 = 𝑋 𝑙→𝑟𝑞 , 𝑌 𝑙𝑞 = 𝑌 𝑙→𝑟𝑞 , 𝐵𝑙𝑞 = 𝐵𝑙→𝑟𝑞 , 𝑂𝑙

𝑞 = 𝑂𝑙→𝑟
𝑞 , and

𝑆A→𝐺
𝑙

𝑞 = 𝑆A→𝐺
𝑟

𝑞 where 𝑌 𝑙→𝑟𝑞 , 𝐵𝑙→𝑟𝑞 , 𝑋 𝑙→𝑟𝑞 , 𝑂𝑙→𝑟
𝑞 , and 𝑆A→𝐺𝑟

𝑞 are left-game-induced
sequences.

Proof. We prove via an induction on 𝑞. The base case (𝑆𝑙0, 𝑆
𝑙→𝑟
0) ∈ 𝐼 and 𝑌 𝑙0 =

𝑌 𝑙→𝑟0 = ⊥ and 𝑆A→𝐺𝑙

0 = 𝑆A→𝐺
𝑟

0 = 𝑆A0 are clear from definitions. Assume the
induction hypothesis holds for 𝑞 − 1 where 𝑞 ≥ 1. We prove the induction step
for 𝑞. By definition, (𝑂𝑙→𝑟

𝑞 , 𝑋 𝑙→𝑟𝑞 , 𝑆A→𝐺
𝑟

𝑞 , 𝐵𝑙→𝑟𝑞) := A(𝑌 𝑙→𝑟
𝑞−1 , 𝑆

A→𝐺𝑟

𝑞−1 ; 𝑅A→𝐺𝑙

𝑞)
and (𝑂𝑙

𝑞, 𝑋
𝑙
𝑞, 𝑆
A→𝐺𝑙

𝑞 , 𝐵𝑙𝑞) := A(𝑌 𝑙
𝑞−1, 𝑆

A→𝐺𝑙

𝑞−1 ; 𝑅A→𝐺𝑙

𝑞). Applying the induction
hypothesis that 𝑌 𝑙

𝑞−1 = 𝑌 𝑙→𝑟
𝑞−1 and 𝑆A→𝐺

𝑙

𝑞−1 = 𝑆A→𝐺
𝑟

𝑞−1 , we conclude 𝑋 𝑙𝑞 = 𝑋 𝑙→𝑟𝑞 ,
𝐵𝑙𝑞 = 𝐵𝑙→𝑟𝑞 , 𝑂𝑙

𝑞 = 𝑂𝑙→𝑟
𝑞 , 𝑆A→𝐺𝑙

𝑞 = 𝑆A→𝐺
𝑟

𝑞 . Again, by definition, (𝑌 𝑙→𝑟𝑞 , 𝑆𝑙→𝑟𝑞) :=
𝑂𝑙→𝑟
𝑞 (𝑋 𝑙→𝑟𝑞 , 𝑆𝑙→𝑟

𝑞−1 ;𝑀𝑂𝑙→𝑟
𝑞
(𝑅𝑙𝑞)) and (𝑌 𝑙𝑞, 𝑆𝑙𝑞) := 𝑂𝑙

𝑞 (𝑋 𝑙𝑞, 𝑆𝑙𝑞−1; 𝑅𝑙𝑞). Having proved
𝑂𝑙
𝑞 = 𝑂𝑙→𝑟

𝑞 and 𝑋 𝑙𝑞 = 𝑋 𝑙→𝑟𝑞 and by induction hypothesis (𝑆𝑙
𝑞−1, 𝑆

𝑙→𝑟
𝑞−1) ∈ 𝐼, we con-

clude by the invariance of 𝐼 that (𝑆𝑙𝑞, 𝑆𝑙→𝑟𝑞) ∈ 𝐼 and by the same-output property that
𝑌 𝑙𝑞 = 𝑌

𝑙→𝑟
𝑞 . □

Theorem 2.3 (Fundamental theorem of code equivalence). Let 𝐼 be an invariant state
relation between states of the left and right games 𝐺 𝑙 and 𝐺𝑟 . If the oracles of the
games satisfy same-output property, then, for all 𝑞 ≥ 1, oracles 𝑂 ∈ out(𝐺 𝑙), inputs
𝑥 ∈ inputs(𝑂), adversary state 𝑆A and adversary output 𝑏 ∈ {⊥, 0, 1},

Pr
[︂
(𝑂𝑙

𝑞, 𝑋
𝑙
𝑞, 𝑆
A→𝐺𝑙

𝑞 , 𝐵𝑙𝑞) = (𝑂, 𝑥, 𝑆A , 𝑏)
]︂
= Pr

[︁
(𝑂𝑟𝑞, 𝑋𝑟𝑞, 𝑆A→𝐺

𝑟

𝑞 , 𝐵𝑟𝑞) = (𝑂, 𝑥, 𝑆A , 𝑏)
]︁
,

where probabilities are over the choice of 𝑅A→𝐺𝑙

𝑖
’s, 𝑅A→𝐺𝑟

𝑖
’s, 𝑅𝑙

𝑖
’s and 𝑅𝑟

𝑖
’s.

Proof. We prove via an induction on 𝑞. Recall that 𝑌 𝑙0 = 𝑌 𝑟0 = ⊥. For base case 𝑞 = 1,
observe that (𝑂𝑙

1, 𝑋
𝑙
1, 𝑆
A→𝐺𝑙

1 , 𝐵𝑙1) = A(⊥, 𝑆
A
0 ; 𝑅A →𝐺𝑙

1). Hence, both probabilities
are equal to Pr

[︂
A(⊥, 𝑆A0 ; 𝑅A →𝐺𝑙

1) = (𝑂, 𝑥, 𝑆A , 𝑏)
]︂

(over choice of 𝑅A1). Assume the
induction hypothesis holds for 𝑞 − 1 where 𝑞 > 1. We prove the induction step for 𝑞.
Again, observe that by definition, (𝑂𝑙

𝑞, 𝑋
𝑙
𝑞, 𝑆
A→𝐺𝑙

𝑞 , 𝐵𝑙𝑞) := A(𝑌 𝑙
𝑞−1, 𝑆

A→𝐺𝑙

𝑞−1 ; 𝑅A →𝐺𝑙

𝑞)
where 𝑌 𝑙

𝑞−1 := 𝑂𝑙
𝑞−1(𝑋

𝑙
𝑞−1, 𝑆

𝑙
𝑞−2; 𝑅𝑙

𝑞−1). (We abuse the notation as the oracle returns

24

(𝑌 𝑙
𝑞−1, 𝑆

𝑙
𝑞−1).) By conditioning on the triples (𝑂old, 𝑥

′, 𝑆Aold) and applying the law of
total probability, we have:

Pr
[︂
A(𝑂𝑙

𝑞−1(𝑋
𝑙
𝑞−1, 𝑆

𝑙
𝑞−2; 𝑅𝑙𝑞−1), 𝑆

A
𝑞−1; 𝑅A →𝐺

𝑙

𝑞) = (𝑂, 𝑥, 𝑆A , 𝑏)
]︂

=
∑︁

(𝑂old,𝑥
′,𝑆Aold)

(︂
Pr
[︂
A(𝑂𝑙

old(𝑥
′, 𝑆𝑙𝑞−2; 𝑅𝑙𝑞−1), 𝑆

A
old; 𝑅A →𝐺

𝑙

𝑞) = (𝑂, 𝑥, 𝑆A , 𝑏)
]︂
×

Pr
[︂
(𝑂𝑙

𝑞−1, 𝑋
𝑙
𝑞−1, 𝑆

A
𝑞−1, 𝐵

𝑙
𝑞−1) = (𝑂old, 𝑥

′, 𝑆Aold,⊥)
]︂)︂

Let 𝜔 = (𝑂, 𝑥, 𝑆A , 𝑏) and 𝜔′ = (𝑂old, 𝑥
′, 𝑆Aold,⊥). By applying induction hy-

pothesis to Pr
[︂
(𝑂𝑙

𝑞−1, 𝑋
𝑙
𝑞−1, 𝑆

A
𝑞−1, 𝐵

𝑙
𝑞−1) = 𝜔

′
]︂
, it suffices to show for every triple

(𝑂old, 𝑥
′, 𝑆Aold) that

Pr
[︂
A(𝑂𝑙

old(𝑥
′, 𝑆𝑙𝑞−2; 𝑅𝑙𝑞−1), 𝑆

A
old; 𝑅A →𝐺

𝑙

𝑞) = 𝜔
]︂
= Pr

[︂
A(𝑂𝑟old(𝑥

′, 𝑆𝑟𝑞−2; 𝑅𝑟𝑞−1), 𝑆
A
old; 𝑅A →𝐺

𝑟

𝑞) = 𝜔
]︂
.

However,

Pr
[︂
A(𝑂𝑙

old(𝑥
′, 𝑆𝑙𝑞−2; 𝑅𝑙𝑞−1), 𝑆

A
old; 𝑅A →𝐺

𝑙

𝑞) = 𝜔
]︂

=
∑︁

𝑟𝑙1,𝑟
𝑙
2,...,𝑟

𝑙
𝑞−1

(︂
Pr
[︂
A(𝑂𝑙

old(𝑥
′, 𝑆𝑙𝑞−2; 𝑅𝑙𝑞−1), 𝑆

A
old; 𝑅A →𝐺

𝑙

𝑞) = 𝜔|∀1 ≤ 𝑖 ≤ 𝑞 − 1. 𝑅𝑙𝑖 = 𝑟
𝑙
𝑖

]︂
×

Pr
[︂
𝑅𝑙1 = 𝑟 𝑙1 ∧ · · · ∧ 𝑅

𝑙
𝑞−1 = 𝑟 𝑙𝑞−1

]︂)︂
=

∑︁
𝑟𝑙1,𝑟

𝑙
2,...,𝑟

𝑙
𝑞−1

(︂
Pr
[︂
A(𝑂𝑟old(𝑥

′, 𝑆𝑙→𝑟𝑞−2 ; 𝑅𝑟𝑞−1), 𝑆
A
old; 𝑅A →𝐺

𝑟

𝑞) = 𝜔|∀1 ≤ 𝑖 ≤ 𝑞 − 1. 𝑅𝑟𝑖 = 𝑀𝑂𝑖
(𝑟 𝑙𝑖)

]︂
×

Pr
[︂
𝑅𝑙1 = 𝑟 𝑙1 ∧ · · · ∧ 𝑅

𝑙
𝑞−1 = 𝑟 𝑙𝑞−1

]︂)︂
=

∑︁
𝑟𝑙1,𝑟

𝑙
2,...,𝑟

𝑙
𝑞−1

(︂
Pr
[︂
A(𝑂𝑟old(𝑥

′, 𝑆𝑙→𝑟𝑞−2 ; 𝑅𝑟𝑞−1), 𝑆
A
old; 𝑅A →𝐺

𝑟

𝑞) = 𝜔|∀1 ≤ 𝑖 ≤ 𝑞 − 1. 𝑅𝑟𝑖 = 𝑀𝑂𝑖
(𝑟 𝑙𝑖)

]︂
×

Pr
[︂
𝑅𝑟1 = 𝑀𝑂1 (𝑟 𝑙1) ∧ · · · ∧ 𝑅

𝑟
𝑞−1 = 𝑀𝑂1 (𝑟 𝑙𝑞−1)

]︂)︂
=

∑︁
𝑟𝑟1 ,𝑟

𝑟
2 ,...,𝑟

𝑟
𝑞−1

(︂
Pr
[︂
A(𝑂𝑟old(𝑥

′, 𝑆𝑟𝑞−2; 𝑅𝑟𝑞−1), 𝑆
A
old; 𝑅A →𝐺

𝑟

𝑞) = 𝜔 |∀1 ≤ 𝑖 ≤ 𝑞 − 1. 𝑅𝑟𝑖 = 𝑟
𝑟
𝑖

]︂
×

Pr
[︂
𝑅𝑟1 = 𝑟𝑟1 ∧ · · · ∧ 𝑅

𝑟
𝑞−1 = 𝑟𝑟𝑞−1

]︂)︂
= Pr

[︂
A(𝑂𝑟old(𝑥

′, 𝑆𝑟𝑞−2; 𝑅𝑟𝑞−1), 𝑆
A
old; 𝑅A →𝐺

𝑟

𝑞) = 𝜔
]︂
.

The second equality follows from Lemma 2.2 and the same-output property. Observe
that Lemma 2.2 shows (𝑆𝑙

𝑞−2, 𝑆
𝑙→𝑟
𝑞−2) ∈ 𝐼, 𝑅

𝑟
𝑖
= 𝑀𝑂𝑖

(𝑟 𝑙
𝑖
), 𝑂𝑙→𝑟

𝑞−1 = 𝑂𝑙
𝑞−1 = 𝑂old,

25

𝑋 𝑙→𝑟
𝑞−1 = 𝑋 𝑙

𝑞−1 = 𝑥′, and 𝑆Aold = 𝑆A→𝐺
𝑙

𝑞−1 = 𝑆A→𝐺
𝑟

𝑞−1 . Therefore, applying the same-output
property yields 𝑂𝑙

old(𝑥
′, 𝑆𝑙

𝑞−2; 𝑅𝑙
𝑞−1) = 𝑂

𝑟
old(𝑥

′, 𝑆𝑙→𝑟
𝑞−2 ; 𝑅𝑟

𝑞−1) and proves the following
probabilities over the choice of 𝑅A

𝑖
’s are equal: 8

Pr
[︂
A(𝑂𝑙

old(𝑥
′, 𝑆𝑙𝑞−2; 𝑅𝑙𝑞−1), 𝑆

A
old; 𝑅A →𝐺

𝑙

𝑞) = 𝜔|∀1 ≤ 𝑖 ≤ 𝑞 − 1. 𝑅𝑙𝑖 = 𝑟
𝑙
𝑖

]︂
= Pr

[︂
A(𝑂𝑟old(𝑥

′, 𝑆𝑙→𝑟𝑞−2 ; 𝑅𝑟𝑞−1), 𝑆
A
old; 𝑅A →𝐺

𝑟

𝑞) = 𝜔|∀1 ≤ 𝑖 ≤ 𝑞 − 1. 𝑅𝑟𝑖 = 𝑀𝑂𝑖
(𝑟 𝑙𝑖)

]︂
.

The third equality follows from bijection of randomness mappings 𝑀𝑂𝑖
’s, inde-

pendence of 𝑅𝑙
𝑖
’s and 𝑅𝑟

𝑖
’s, and their uniform distributions. Last equality follows from

renaming 𝑀𝑂𝑖
(𝑟 𝑙
𝑖
) to 𝑟𝑟

𝑖
as a result of bijection of randomness mappings 𝑀𝑂𝑖

’s. Notice
that after renaming 𝑆𝑙→𝑟

𝑞−2 is exactly 𝑆𝑟
𝑞−2. □

Corollary 2.3.1. Let 𝐼 be an invariant state relation between states of the left and
right games 𝐺 𝑙 and 𝐺𝑟 . If the oracles of the games satisfy same-output property, then,
for all 𝑞 ≥ 1, Pr

[︁
𝐵𝑙𝑞 = 1

]︁
= Pr

[︁
𝐵𝑟𝑞 = 1

]︁
.

2.3 CCA-Secuirty of KEM-DEM

Next, we illustrate an example of a security reduction in SSP by revisiting KEM-DEM
paradigm for building public-key encryption (PKE) schemes indistinguishable under
chosen-ciphertext attacks (IND-CCA). KEM-DEM is a popular example for illustrating
proofs in the SSP framework. For example, the original paper on SSP [BDLF+18] and
the formalization effort of SSP in EasyCrypt [DKO21] both have used the KEM-DEM
example.

Key encapsulation mechanism (KEM) is a public-key cryptographic primitive that
allows to encapsulate a (short) symmetric key using a public key. The symmetric
key then allows to encrypt a (long) message with a symmetric encryption scheme.
When combined with KEM, the symmetric encryption scheme is referred to as Data
encapsulation mechanism (DEM). Initially, a public and secret key pair (𝑝𝑘, 𝑠𝑘) is
generated by the key generation algorithm of the KEM scheme. To encrypt a (long)
message 𝑚 with public key 𝑝𝑘 , a (short) fresh symmetric key 𝑘 is generated and
encapsulated (encrypted) as 𝑐𝑘 with key encapsulation algorithm of the KEM scheme
using 𝑝𝑘 . In the next step, 𝑚 is encrypted to 𝑐𝑚 with the encryption algorithm of DEM
scheme using 𝑘 . The final cipher text will then be (𝑐𝑘 , 𝑐𝑚). To decrypt a ciphertext
(𝑐𝑘 , 𝑐𝑚) using secret key 𝑠𝑘 , 𝑐𝑘 is decapsulated using 𝑠𝑘 to obtain 𝑘 . Then, 𝑐𝑚 is
decrypted with the decryption algorithm of DEM scheme using 𝑘 .

Therefore, KEM-DEM is a generic construction of a hybrid public-key encryption
scheme using a KEM and DEM primitive. Such hybrid public-key encryption
constructions enjoy fast encryption despite computational-heavy public-key encryption
by delegating the hard work of encrypting long messages to fast symmetric key
encryption schemes.

8One can prove this in more details by conditioning on concrete string choices for 𝑅A
𝑖

’s. After
conditioning probabilities will be exactly equal (both zero or one) because of inputs of A are exactly
equal.

26

In the following, we formally define the syntax of a KEM scheme ΠKEM and a DEM
scheme ΠDEM as well as a candidate KEM-DEM hybrid construction ΠPKE. We then
define KEM-CCA and DEM-CCA security for ΠKEM and ΠDEM, respectively. Finally,
we reduce PKE-CCA security of ΠPKE to KEM-CCA and DEM-CCA with a game
hopping hybrid argument.

Formally, a KEM scheme Πℓ,KEM = (𝑔𝑒𝑛, 𝑒𝑛𝑐𝑎𝑝𝑠, 𝑑𝑒𝑐𝑎𝑝𝑠) consists of three
probabilistic algorithms: key generation, which returns a pair (𝑝𝑘, 𝑠𝑘) of public
key and secret key; encapsulation, which given 𝑝𝑘 returns a key 𝑘 of length ℓ and
encapsulation 𝑐𝑘 of 𝑘; decapsulation, which given 𝑠𝑘 and a an encapsulated key 𝑐𝑘
returns raw key 𝑘 (decapsulation of 𝑐𝑘). A KEM scheme is required to satisfy the
correctness property: for any message 𝑚 from the message space,

Pr
[︃
Πℓ,KEM.𝑑𝑒𝑐𝑎𝑝𝑠(𝑠𝑘, 𝑐𝑘) = 𝑘; (𝑐𝑘 , 𝑘) ←$ Πℓ,KEM.𝑒𝑛𝑐𝑎𝑝𝑠(𝑝𝑘)

(𝑝𝑘, 𝑠𝑘) ←$ Πℓ,KEM.𝑔𝑒𝑛()

]︃
= 1,

where the probability is over the randomness of ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠 and ΠKEM.𝑔𝑒𝑛.
A DEM scheme Πℓ′,DEM = (𝑒𝑛𝑐, 𝑑𝑒𝑐) consists of two probabilistic algorithms:

encryption and decryption algorithms that both require a key of length ℓ′ provided
by the KEM scheme. (Notice the lack of key generation algorithm compared to
the symmetric key encryption schemes.) A DEM scheme is required to satisfy the
correctness property: for any message 𝑚 from the message space,

Pr
[︁
Πℓ′,DEM.𝑑𝑒𝑐(𝑘,Πℓ′,DEM.𝑒𝑛𝑐(𝑘, 𝑚)) = 𝑚; 𝑘 ←$ {0, 1}ℓ′

]︁
= 1,

where the probability is over the randomness of Πℓ′,DEM.𝑒𝑛𝑐.
We define the following candidate hybrid construction ΠPKE of a PKE scheme

based on Πℓ,KEM and Πℓ′,DEM where ℓ = ℓ′ = 𝜆.

Definition 2.10 (Candidate PKE construction). Let Π𝜆,KEM and Π𝜆,DEM be respectively
KEM and DEM schemes with key length 𝜆. We define PKE scheme ΠPKE as follows:

ΠPKE.𝑔𝑒𝑛()
return Π𝜆,KEM.𝑔𝑒𝑛()

ΠPKE.𝑒𝑛𝑐(𝑝𝑘, 𝑚)
𝑐𝑘 , 𝑘 ←$ Π𝜆,KEM.𝑒𝑛𝑐𝑎𝑝𝑠(𝑝𝑘)
𝑐𝑚 ←$ Π𝜆,DEM.𝑒𝑛𝑐(𝑘, 𝑚)
return (𝑐𝑘 , 𝑐𝑚)

ΠPKE.𝑑𝑒𝑐(𝑠𝑘, 𝑐)
(𝑐𝑘 , 𝑐𝑚) ← parse 𝑐
𝑘 ← Π𝜆,KEM.𝑑𝑒𝑐𝑎𝑝𝑠(𝑠𝑘, 𝑐𝑘)
𝑚 ← Π𝜆,DEM.𝑑𝑒𝑐(𝑘, 𝑐𝑚)
return 𝑚

Hereafter, for simplicity, we denote Π𝜆,KEM and Π𝜆,DEM by ΠKEM and ΠDEM.
We reduce the PKE-CCA security of construction ΠPKE to KEM-CCA and DEM-

CCA security of schemes Π𝜆,KEM and Π𝜆,DEM, respectively, a result first shown by Cramer
and Shoup [CS98]. Therefore, we first define KEM-CCA and DEM-CCA security
notions in SSP and in the next step prove the reduction in Theorem 2.4.

Figure 4 illustrates the definition of packages KEM, DEM, and KEY. The KEY package
is a common paradigm in security modeling with SSP for sharing state (keys) between
several packages. Usually, one of these packages (keying packages), performing key

27

derivations or key generation, sets a key in the package KEY and one or more packages
(keyed packages) consume the key in the package. In KEM-DEM hybrid construction,
the KEM package generates a symmetric key and sets it in the KEY package from which
the DEM package retrieves the key for encryption. We will see another example of key
storage packages in TLS security games in Section 3.2.

Notice the KEY𝑏,𝜆 package is parameterized with 𝑏 and 𝜆. Upon a SET oracle call
to the ideal package (𝑏 = 1), a uniformly random key of length 𝜆 is sampled and set
in the package, regardless of the oracle input. However, in the real package (𝑏 = 0),
the key provided as an input to the oracle is set in the package. We use the ideal key
package for 𝐺𝑏,Π𝜆,DEM

DEM-CCA to allow the adversary to instruct the game with a random key,
while in 𝐺𝑏,Π𝜆,KEM

KEM-CCA , we require the adversary to distinguish between a random key and
the real key even if it observes the encapsulation of the key.

Definition 2.11 (KEM-CCA security game). Let KEM and KEY be the packages defined
in Figure 4. We define the KEM-CCA security game𝐺𝑏,Π𝜆,KEM

KEM-CCA := KEM
IDGET

→ KEY𝑏,𝜆 visual-
izedbelow. Notice the adversary has access to fouroracles {KEMGEN,ENCAPS,DECAPS,GET}.

KEM

KEY𝑏,𝜆

SET
KEMGEN
ENCAPS
DECAPS

GET

Similar to PKE-CCA game, 𝐺𝑏,Π𝜆,KEM

KEM-CCA uses assertions to force the adversary to call
KEMGEN oracle and generate public and secret keys pair before calling other oracles.
In the real game the adversary observes the real key (via GET), its encapsulation (via
ENCAPS), and decapsulation of any non challenge ciphertext (via DECAPS). In the
ideal game the adversary receives a random key instead of the real key because the
input to SET oracle is ignored. However, the adversary still receives the encapsulation
of real key.

Definition 2.12 (DEM-CCA security game). Let DEM and KEY be the packages defined
in Figure 4. We define the DEM-CCA security game 𝐺𝑏,Π𝜆,DEM

DEM-CCA := IDSET
DEM𝑏
→ KEY1,𝜆,

visualized below. Notice the adversary has access to three oracles {SET,ENC,DEC}.

DEM𝑏

KEY1,𝜆
SET

ENC
DEC

GET

Similar to KEM-CCA security game, 𝐺𝑏,Π𝜆,DEM

DEM-CCA requires the adversary to call the
SET oracle so a random key is generated by the game. In the real game, upon calling
the oracle ENC, the adversary receives an encryption of the real message as a challenge
while in the ideal game, the adversary receives an encryption of all-zeros string. In
both games, the adversary can request decryption of non-challenge (those not queried
to ENC) ciphertexts. The game uses a set 𝑆 to record the challenge ciphertexts in
oracle ENC.

28

KEM

Parameters

ΠKEM : KEM scheme

State

𝑝𝑘 : public key
𝑠𝑘 : secret key
𝑐 : challenge

KEMGEN()
assert 𝑠𝑘 = ⊥
𝑝𝑘, 𝑠𝑘 ←$ ΠKEM.𝑔𝑒𝑛()
return 𝑝𝑘

ENCAPS()
assert 𝑝𝑘 ≠ ⊥
assert 𝑐 = ⊥
𝑐, 𝑘 ←$ ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠(𝑝𝑘)
SET(𝑘)
return 𝑐

DECAPS(𝑐′)
assert 𝑠𝑘 ≠ ⊥
assert 𝑐 ≠ 𝑐′

𝑘 ←$ ΠKEM.𝑑𝑒𝑐𝑎𝑝𝑠(𝑠𝑘, 𝑐′)
return 𝑘

DEM𝑏

Parameters

𝑏 : idealization bit
ΠDEM : DEM scheme

State

𝑆 : set

ENC(𝑚)
𝑘 ← GET()
if 𝑏 = 1 :

𝑐 ←$ ΠDEM.𝑒𝑛𝑐(𝑘, 0 |𝑚 |)
else :
𝑐 ←$ ΠDEM.𝑒𝑛𝑐(𝑘, 𝑚)

𝑆 ← 𝑆 ∪ {𝑐}
return 𝑐

DEC(𝑐)
assert 𝑐 ∉ 𝑆
𝑘 ← GET()
𝑚 ← ΠDEM.𝑑𝑒𝑐(𝑘, 𝑐)
return 𝑚

KEY𝑏,𝜆

Parameters

𝑏 : idealization bit
𝜆 : integer

State

𝑘 : key

SET(𝑘′)
assert 𝑘 = ⊥
if 𝑏 = 1 :
𝑘 ←$ {0, 1}𝜆

else :
𝑘 ← 𝑘 ′

GET()
assert 𝑘 ≠ ⊥
return 𝑘

Comb

Parameters

ΠDEM : DEM scheme

State

𝑝𝑘 : public key
𝑐 : challenge

PKGEN()
assert 𝑝𝑘 = ⊥
𝑝𝑘 ←$ KEMGEN()
return 𝑝𝑘

PKENC(𝑚)
assert 𝑝𝑘 ≠ ⊥
assert 𝑐 = ⊥
𝑐𝑘 ←$ ENCAPS()
𝑐𝑚 ←$ ENC(𝑚)
𝑐 ← (𝑐𝑘 , 𝑐𝑚)
return 𝑐

PKDEC(𝑐′)
assert 𝑝𝑘 ≠ ⊥
assert 𝑐 ≠ 𝑐′

(𝑐𝑘 , 𝑐𝑚) ← parse 𝑐
(𝑐′𝑘 , 𝑐

′
𝑚) ← parse 𝑐′

if 𝑐′𝑘 = 𝑐𝑘 :
𝑚 ← DEC(𝑐′𝑚)

else :
𝑘 ′ ← DECAPS(𝑐′𝑘)
𝑚 ← ΠDEM.𝑑𝑒𝑐(𝑘 ′, 𝑐′𝑚)

return 𝑚

Figure 4: Packages KEM, DEM, KEY, and Comb

29

Theorem 2.4. Let Π𝜆,PKE be the PKE construction in definition 2.10 and A be an
adversary. There exist probabilistic polynomial-time (PPT) reductions R1, R2, R3
such that

Adv(A, 𝐺𝑏,ΠPKE

PKE-CCA) ≤ Adv(A → R1, 𝐺
𝑏,ΠKEM

KEM-CCA)
+ Adv(A → R2, 𝐺

𝑏,ΠDEM

DEM-CCA)
+ Adv(A → R3, 𝐺

𝑏,ΠKEM

KEM-CCA).

Proof. Let us define the combiner package Comb in Figure 4 which combines the output
interfaces of packages KEM and DEM analogous to the construction Π𝜆,PKE. Define the
parameterized modular game Mod𝑏1,𝑏2 := Comb → KEM

DEM𝑏1
→ KEY𝑏2,𝜆. Next, we define

hybrid games 𝐻𝑖 for 𝑖 ∈ {1, 2, 3, 4} using the generic game Mod𝑏1,𝑏2 as follows:

𝐻1 := Mod0,0 = Comb→ KEM

DEM0 → KEY0,𝜆

𝐻2 := Mod0,1 = Comb→ KEM

DEM0 → KEY1,𝜆

𝐻3 := Mod1,1 = Comb→ KEM

DEM1 → KEY1,𝜆

𝐻4 := Mod1,0 = Comb→ KEM

DEM1 → KEY0,𝜆

See visualization of these hybrid games in Figure 5. Briefly, 𝐻1 is the modular
variant of 𝐺0,ΠPKE

PKE-CCA; 𝐻2 is the same as 𝐻1 except that the KEY package is idealized (i.e.
KEY1,𝜆); 𝐻3 is the same as 𝐻2 except that the DEM package is idealized (i.e. DEM1); finally,
𝐻4 is the modular variant of 𝐺1,ΠPKE

PKE-CCA and when compared to 𝐻3, the KEY package is
deidealized (i.e. KEY0,𝜆).

Having defined the hybrid games, we informally show the following game hops:

𝐺
0,ΠPKE

PKE-CCA

𝑐𝑜𝑑𝑒≡ 𝐻1
𝑐𝑜𝑚𝑝
≈ 𝐻2

𝑐𝑜𝑚𝑝
≈ 𝐻3

𝑐𝑜𝑚𝑝
≈ 𝐻4

𝑐𝑜𝑑𝑒≡ 𝐺
1,ΠPKE

PKE-CCA

Define reductions R𝑖 for 𝑖 ∈ {1, 2, 3} as follows:

R1 := Comb→
IDout(KEM)

DEM0

R2 := Comb→ KEM

IDout(DEM𝑏)

R3 := Comb→
IDout(KEM)

DEM1

See Figure 6 for visualization of reductions (red packages) as graph cuts in the call
graph of the hybrid games 𝐻𝑖. Notice that we do not show identity packages in the
graph cuts.

30

KEY0,𝜆

DEM0

KEM
Comb

𝐻1 : GET

SET

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

(a) 𝐻1

KEY1,𝜆

DEM0

KEM
Comb

𝐻2 : GET

SET

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

(b) 𝐻2

KEY1,𝜆

DEM1

KEM
Comb

𝐻3 : GET

SET

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

(c) 𝐻3

KEY0,𝜆

DEM1

KEM
Comb

𝐻4 : GET

SET

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

(d) 𝐻4

Figure 5: Hybrid games 𝐻𝑖 for 𝑖 ∈ {1, 2, 3, 4}

31

KEY𝑏,𝜆

DEM0

KEM

Comb

R1 : GET

SET

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

(a) R1

KEY1,𝜆

DEM𝑏

KEM

Comb

R2 : GET

SET

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

(b) R2

KEY𝑏,𝜆

DEM1

KEM

Comb

R3 : GET

SET

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

(c) R3

Figure 6: Reductions R𝑖 for 𝑖 ∈ {1, 2, 3} as red packages

Formally, we prove the following code equivalences in Claims 2.6 and 2.5:

𝐻1
𝑐𝑜𝑑𝑒≡ 𝐺

0,ΠPKE

PKE-CCA, 𝐻4
𝑐𝑜𝑑𝑒≡ 𝐺

1,ΠPKE

PKE-CCA (Claim 2.6)

𝐻1
𝑐𝑜𝑑𝑒≡ R1 → 𝐺

0,ΠKEM

KEM-CCA, 𝐻2
𝑐𝑜𝑑𝑒≡ R1 → 𝐺

1,ΠKEM

KEM-CCA (Claim 2.5)

𝐻2
𝑐𝑜𝑑𝑒≡ R2 → 𝐺

0,ΠDEM

DEM-CCA, 𝐻3
𝑐𝑜𝑑𝑒≡ R2 → 𝐺

1,ΠDEM

DEM-CCA (Claim 2.5)

𝐻3
𝑐𝑜𝑑𝑒≡ R3 → 𝐺

1,ΠKEM

KEM-CCA, 𝐻4
𝑐𝑜𝑑𝑒≡ R3 → 𝐺

0,ΠKEM

KEM-CCA (Claim 2.5)

32

Combining all,

Adv(A, 𝐺𝑏,ΠPKE

PKE-CCA) = | Pr
[︂
1 = A → 𝐺

0,ΠPKE

PKE-CCA

]︂
− Pr

[︂
1 = A → 𝐺

1,ΠPKE

PKE-CCA

]︂
|

= | Pr[1 = A → 𝐻1] − Pr[1 = A → 𝐻4] |
= | Pr[1 = A → 𝐻1] − Pr[1 = A → 𝐻2]
+ Pr[1 = A → 𝐻2] − Pr[1 = A → 𝐻3]
+ Pr[1 = A → 𝐻3] − Pr[1 = A → 𝐻4] |

≤ | Pr[1 = A → 𝐻1] − Pr[1 = A → 𝐻2] |
+ | Pr[1 = A → 𝐻2] − Pr[1 = A → 𝐻3] |
+ | Pr[1 = A → 𝐻3] − Pr[1 = A → 𝐻4] |

= Adv(A, 𝐻1, 𝐻2)
+ Adv(A, 𝐻2, 𝐻3)
+ Adv(A, 𝐻3, 𝐻4)

= Adv(A → R1, 𝐺
𝑏,ΠKEM

KEM-CCA)
+ Adv(A → R2, 𝐺

𝑏,ΠDEM

DEM-CCA)
+ Adv(A → R3, 𝐺

𝑏,ΠKEM

KEM-CCA),

where the second equality follows from Claim 2.6, the second to the last inequality
follows by triangle inequality and last equality follows from Claim 2.5 and Lemma 2.1
applied to big games 𝐺0

𝑖,𝑏𝑖𝑔
:= 𝐻𝑖 and 𝐺1

𝑖,𝑏𝑖𝑔
:= 𝐻𝑖+1 for 𝑖 ∈ {1, 2, 3} (i.e. game pairs

(𝐻1, 𝐻2), (𝐻2, 𝐻3), and (𝐻4, 𝐻4)) and reductions R𝑖. □

Claim 2.5. For 𝑏 ∈ {0, 1}, 𝐻1+𝑏
𝑐𝑜𝑑𝑒≡ R1 → 𝐺

𝑏,ΠKEM

KEM-CCA, 𝐻2+𝑏
𝑐𝑜𝑑𝑒≡ R2 → 𝐺

𝑏,ΠDEM

DEM-CCA, and
𝐻3+𝑏

𝑐𝑜𝑑𝑒≡ R3 → 𝐺
𝑏,ΠKEM

KEM-CCA.

Proof. The code equivalences can be verified by inlining the code of small games
𝐺
𝑏,ΠDEM

DEM-CCA and 𝐺𝑏,ΠKEM

KEM-CCA in the corresponding reductions R𝑖 and comparing the resulting
pseudocode with the inlined code of games 𝐻𝑖, which are exactly the same. The
other approach is to verify the code equivalence with algebraic notation of package
composition. For instance, since 𝐻1 is defined as Comb→ KEM

DEM0 → KEY0,𝜆, we have

R1 → 𝐺
0,ΠKEM

KEM-CCA

𝑐𝑜𝑑𝑒≡
(︂
Comb→

IDout(KEM)

DEM0

)︂
→

(︂ KEM

IDGET
→ KEY0,𝜆

)︂
𝑐𝑜𝑑𝑒≡ Comb→ KEM

DEM0 → KEY0,𝜆.

□

Claim 2.6. 𝐻1
𝑐𝑜𝑑𝑒≡ 𝐺

0,ΠPKE

PKE-CCA and 𝐻4
𝑐𝑜𝑑𝑒≡ 𝐺

1,ΠPKE

PKE-CCA.

Proof. Notice Mod𝑏,0 := Comb → KEM

DEM𝑏
→ KEY0,𝜆. We prove Mod𝑏,0

𝑐𝑜𝑑𝑒≡ 𝐺
𝑏,ΠPKE

PKE-CCA

for 𝑏 ∈ {0, 1} which implies the required equivalences since Mod0,0 = 𝐻1 and
Mod1,0 = 𝐻4. We apply the Fundamental Theorem of Code Equivalence (Theorem 2.3)
and specifcially Corollary 2.3.1 from previous section to prove the code equivalence.
We first present a state relation 𝐼 for the games Mod𝑏,0 and 𝐺𝑏,ΠPKE

PKE-CCA.

33

Definition 2.13 (State relation for states of Mod𝑏,0 and 𝐺𝑏,ΠPKE

PKE-CCA). For states 𝑆𝑙 and 𝑆𝑟 ,
(𝑆𝑙 , 𝑆𝑟) ∈ 𝐼 if

𝑝𝑘 left = 𝑝𝑘right ∧ 𝑠𝑘 left = 𝑠𝑘right (1)
𝑝𝑘 left = ⊥ ⇔ 𝑠𝑘 left = ⊥ (2)
𝑐PKE

left = 𝑐right (3)
𝑐PKE

left = ⊥ ⇔ 𝑘 left = ⊥ ⇔ 𝑐KEM
left = ⊥ (4)(︁

𝑐PKE
left = ⊥ ⇒ 𝑆 = ∅

)︁
∧
(︁
𝑐PKE

left ≠ ⊥ ⇒ (𝑆 = {𝑐𝑚} ∧ (★, 𝑐𝑚) = 𝑐PKE
left)

)︁
(5)

𝑘 left ≠ ⊥ ⇒ 𝑘 left = ΠKEM.𝑑𝑒𝑐𝑎𝑝𝑠(𝑠𝑘 left, 𝑐
KEM
left) (6)

𝑐PKE
left ≠ ⊥ ⇒ 𝑐PKE

left = (𝑐KEM
left , ★) (7)

where the left and right subscripts are used to denote the variables in 𝑆𝑙 and 𝑆𝑟 ,
respectively.

Observe that state relations 3, 4, 5, 6, and 7 describe properties only for the left
game. Intuitively, one should be able to argue their invariance independently from the
right game. We refer to these state relations (invariants) as one-sided state relations
(invariants). In Section 4.2.5, we present the Invariant bubbling theorem about the
one-sided state relations that simplifies proving invariance of such state relations.

Definition 2.14 (One-sided and two-sided state relations). A one-sided state relation
is a state relation that expresses a property only about the state of one of the left or
right games. A two-sided state relation is a state relations that describes a property
between the states of both of the left and the right game.

Definition 2.15 (Randomness mapping for oracles of Mod𝑏,0 and 𝐺𝑏,ΠPKE

PKE-CCA). Although
package oracles defined in Figure 4 do not accept an explicit randomness, we can
imagine PKGEN receives a randomness string and use it for key generation. Therefore,
the mapping can simply be an identity mapping. (i.e. the strings are equal) For
PKENC, we can imagine the randomness string is split into two halfs such that
each half is consumed by encryption and encapsulation. The mapping can again be
simply an identity mapping. Concrelty, we assume ΠKEM.𝑔𝑒𝑛 returns the same key pair
(𝑝𝑘, 𝑠𝑘) in both games, ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠 reutrns the same encapsulated key (𝑐𝑘 , 𝑘) on
𝑝𝑘 , and ΠDEM.𝑒𝑛𝑐 returns the same ciphertext 𝑐𝑚 on 𝑚.

Notice the bijection of randomness mapping of Definition 2.15 is obvious. In the
following claim, we show invariance of 𝐼 and the same-output property in order to apply
Theorem 2.3 and conclude Pr

[︁
1 = A → 𝐺 𝑙

]︁
= Pr[1 = A → 𝐺𝑟] from Corollary

2.3.1. This concludes the proof of Claim 2.6. □

Claim 2.7. Let𝐺 𝑙 := Mod𝑏,0 and𝐺𝑟 := 𝐺𝑏,ΠPKE

PKE-CCA and 𝐼 be the state relation in Definition
2.13. Then, 𝐼 is an invariant state relation and the oracles of games 𝐺 𝑙 and 𝐺𝑟 satisfy
the same-output property.

Proof. We begin by proving the same-output property. Recall that we consider
assertion failures and oracle abort as a special output value ⊥ returned by the oracles

34

that stop the games. For ease of referencing lines of the game pseudocodes in the
following code-based argument, we have inlined the code of all packages Comb, KEM,
DEM𝑏, KEY0,𝜆 recursively in Mod𝑏,0 and inlined the hybrid construction ΠPKE in 𝐺𝑏,ΠPKE

PKE-CCA

in Figure 7. Red lines, only shown for demonstration, are original oracle calls that are
replaced with blue lines indicating inlined code. Therefore, oracle codes consist of
only blue and black lines. Notice how the SET(𝑘) oracle call is also inlined as part of
recursive inlining.

For PKGEN, using the invariant 1, left and right secret keys are the same. (both
are ⊥ or have equal values) Therefore, either the assertion fails in both left and right
games or neither of the assertions fail. If the assertion does not fail, the oracle returns
the same public key and secret key due to the randomness mapping.

For PKENC, using the invariants 1, assertion assert 𝑝𝑘 ≠ ⊥ either fails in both
the left and right games or in neither fails. Similarly, using invariant 3, assertions
assert 𝑐PKE = ⊥ and assert 𝑐 = ⊥ either both fail or neither fail. Invariant 4 ensures
that other assertions (assert 𝑐KEM = ⊥ and assert 𝑘 = ⊥) in the left game never fail.
Using the randomness mapping for encapsulation and encryption as well as invariant
1 that public keys are equal, it can be seen that oracles return the same encapsulated
keys and encrypted messages.

For PKDEC, using invariants 1 and 2, assertions assert 𝑝𝑘 ≠ ⊥ and assert 𝑠𝑘 ≠ ⊥
in the left and right game either both fails or neither fails. Similarly, using invariant 3,
assertions assert 𝑐 ≠ 𝑐′ and assert 𝑐PKE ≠ 𝑐′ have the same failing status. Moreover, if
the else branch in the left game is chosen, the same output is returned from both oracle.
(Invariant 7 prevents failure of assertion assert 𝑐KEM ≠ 𝑐′

𝑘
because 𝑐𝑘 = 𝑐KEM.) Now,

consider the branch 𝑐′
𝑘
= 𝑐𝑘 is chosen. Since 𝑐′ ≠ 𝑐PKE, then 𝑐′𝑚 ≠ 𝑐𝑚. Therefore,

using invariant 5, assertion assert 𝑐′𝑚 ∉ 𝑆 does not fail. Finally, invariants 6 and 7
prove that the output of the oracle in left game is the same as right game.

To prove invariance of 𝐼, observe that PKDEC does not modify the state. Moreover,
it is easy to see that PKGEN preserves the invariants. To prove invariant 6, the
correctness property of KEM scheme is required (i.e. 𝑘 = ΠKEM.𝑑𝑒𝑐𝑎𝑝𝑠(𝑠𝑘, 𝑐𝑘) where
(𝑐𝑘 , 𝑘) ←$ ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠(𝑝𝑘)). To prove invariant 5, observe that only one element is
added to 𝑆 because the assertions in PKENC prevent the adversary from generating
several challenges. Other invariants can be easily proven using the randomness
mapping and code logic. □

Remark. We want to emphasize that Theorem 2.3 lays the foundation for SSBee
that we introduce in Section 2.5. Looking ahead, SSBee helps to automate the
code equivalence proofs such as proof of Claim 2.7. It is noteworthy why the
automation is very useful as the complexity of code-based argument such as the one
in proof of Claim 2.7 can easily get out of control as the security games become more
complex. The code equivalence proof technique demonstrated in this section was
first introduced by Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss
(BDEFKK) [BDLE+21] in their analysis of TLS 1.3 key schedule security analysis
and is extensively used in this thesis. We want to emphasize that the formalization,
statement, and proof of the Theorem 2.3 is a contribution of this thesis as a result of
hours of discussion with my supervisors. Although Brzuska, Delignat-Lavaud, Egger,

35

Mod𝑏,0

Parameters

𝑏 : idealization bit
ΠKEM : KEM scheme
ΠDEM : DEM scheme
State

𝑝𝑘 : public key
𝑠𝑘 : secret key
𝑐PKE : PKE challenge
𝑐KEM : KEM challenge
𝑘 : key
𝑆 : set

PKGEN()
assert 𝑝𝑘 = ⊥
𝑝𝑘 ←$ KEMGEN()
assert 𝑠𝑘 = ⊥
𝑝𝑘, 𝑠𝑘 ←$ ΠKEM.𝑔𝑒𝑛()
return 𝑝𝑘

PKENC(𝑚)
assert 𝑝𝑘 ≠ ⊥
assert 𝑐PKE = ⊥
𝑐𝑘 ←$ ENCAPS()
assert 𝑝𝑘 ≠ ⊥
assert 𝑐KEM = ⊥
𝑐KEM, 𝑘 ′ ←$ ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠(𝑝𝑘)
SET(𝑘)
assert 𝑘 = ⊥
𝑘 ← 𝑘 ′

𝑐𝑘 ← 𝑐KEM

𝑐𝑚 ←$ ENC(𝑚)
𝑘 ← GET()
assert 𝑘 ≠ ⊥
if 𝑏 = 1 :

𝑐𝑚 ←$ ΠDEM.𝑒𝑛𝑐(𝑘, 0 |𝑚 |)
else :
𝑐𝑚 ←$ ΠDEM.𝑒𝑛𝑐(𝑘, 𝑚)

𝑆 ← 𝑆 ∪ {𝑐𝑚}
𝑐PKE ← (𝑐𝑘 , 𝑐𝑚)
return 𝑐PKE

PKDEC(𝑐′)
assert 𝑝𝑘 ≠ ⊥
assert 𝑐PKE ≠ 𝑐′

(𝑐𝑘 , 𝑐𝑚) ← parse 𝑐PKE

(𝑐′𝑘 , 𝑐
′
𝑚) ← parse 𝑐′

if 𝑐′𝑘 = 𝑐𝑘 :
𝑚 ← DEC(𝑐′𝑚)
assert 𝑐′𝑚 ∉ 𝑆

𝑘 ← GET()
assert 𝑘 ≠ ⊥
𝑚 ← ΠDEM.𝑑𝑒𝑐(𝑘, 𝑐′𝑚)

else :
𝑘 ′ ← DECAPS(𝑐′𝑘)
assert 𝑠𝑘 ≠ ⊥
assert 𝑐KEM ≠ 𝑐′𝑘
𝑘 ′ ← ΠKEM.𝑑𝑒𝑐𝑎𝑝𝑠(𝑠𝑘, 𝑐′𝑘)
𝑚 ← ΠDEM.𝑑𝑒𝑐(𝑘 ′, 𝑐′𝑚)

return 𝑚

𝐺
𝑏,ΠPKE

PKE-CCA

Parameters

𝑏 : idealization bit
ΠKEM : KEM scheme
ΠDEM : DEM scheme

State

𝑝𝑘 : public key
𝑠𝑘 : secret key
𝑐 : challenge

PKGEN()
assert 𝑠𝑘 = ⊥
𝑝𝑘, 𝑠𝑘 ←$ ΠPKE.𝑔𝑒𝑛()
𝑝𝑘, 𝑠𝑘 ←$ ΠKEM.𝑔𝑒𝑛()
return 𝑝𝑘

PKENC(𝑚)
assert 𝑝𝑘 ≠ ⊥
assert 𝑐 = ⊥
if 𝑏 = 0 then
𝑐 ←$ ΠPKE.𝑒𝑛𝑐(𝑝𝑘, 𝑚)
𝑐𝑘 , 𝑘 ←$ ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠(𝑝𝑘)
𝑐𝑚 ←$ ΠDEM.𝑒𝑛𝑐(𝑘, 𝑚)
𝑐 ← (𝑐𝑘 , 𝑐𝑚)

else
𝑐 ←$ ΠPKE.𝑒𝑛𝑐(𝑝𝑘, 0 |𝑚 |)
𝑐𝑘 , 𝑘 ←$ ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠(𝑝𝑘)
𝑐𝑚 ←$ ΠDEM.𝑒𝑛𝑐(𝑘, 0 |𝑚 |)
𝑐 ← (𝑐KEM, 𝑐𝑚)

return 𝑐

PKDEC(𝑐′)
assert 𝑠𝑘 ≠ ⊥
assert 𝑐 ≠ 𝑐′

𝑚 ← ΠPKE.𝑑𝑒𝑐(𝑠𝑘, 𝑐′)
(𝑐′𝑘 , 𝑐

′
𝑚) ← parse 𝑐′

𝑘 ← ΠKEM.𝑑𝑒𝑐𝑎𝑝𝑠(𝑠𝑘, 𝑐′𝑘)
𝑚 ← ΠDEM.𝑑𝑒𝑐(𝑘, 𝑐′𝑚)
return 𝑚

Figure 7: Games Mod𝑏,0 and 𝐺𝑏,ΠPKE

PKE-CCA

36

Fournet, Kohbrok, Kohlweiss (BDEFKK) are the first to introduce the concept and
technique in their work [BDLE+21], they do not explicitly express, state, and prove
this foundational observation but rather they implicitly use it in the proof of two major
lemmata C.2 and C.5 of their work. These lemmata are later introduced in Section
3.3.3.

2.4 SMT Solvers and SMT-LIB language

Satisfiability Modulo Theory (SMT) problems are decision problems that ask for
satisfiability of a set of given logical formulae. When the logical formulae come from
propositional logic, these problems are called SAT problems. When the formulae
become more complex and come from first (or higher) order logic, these problems are
referred to as SMT problems. Their name comes from the fact that these problems
usually ask for satisfiability of a set of formulae within a certain theory such as the
real numbers or integers as well as data structures such as lists, arrays, strings, etc.

SMT problems are computationally very hard because SMT problems are general-
ization of SAT problems that are NP-complete. On the other hand, decision problem
of natural numbers with multiplication and addition is undecidable. SMT solvers are
tools that aim to solve SMT problems for a subset of inputs. CVC5 [BBB+22] and
Z3 [DMB08] are, among others, two open source SMT solvers. In this thesis, we
use SSBee which relies on CVC5. We also did a limited experiment with Z3 that we
discuss in Section 2.6.6.

SMT-LIB [BFT16] is an initiative that, among others, standardizes a common input
and output language SMT-LIB for SMT solvers. The SMT-LIB Standard proposes
a syntax to define logical formulae and feed into SMT solvers. CVC5 and Z3 both
have adopted the SMT-LIB language standard as their input language. We refer the
reader to the latest standard version 2.7 [BFT16] for the syntax of the language. The
file extension for the files written in SMT-LIB language is .smt2.

Given a set of formulae modulo some theory, SMT solvers have three possible out-
puts: sat indicating the satisfiability of the formulae followed by a model (assignments
to all free variables of the formulae), unsat indicating unsatisfiability of the formulae
and optionally (if requested by the user) a proof file, and unknown indicating inability
of the solver to determine the satisfiability followed by a partial model that does not
satisfy the formulae. The other possible outcome is that solver does not terminate.
This is a very unfortunate case as the solver wastes the time of the user without giving
any information even about its inability to determine the result. This case is usually
controlled by setting a timeout for the solver.

As a final note, we want to elaborate on how predicates can be proven with SMT
solvers. It is easy to see that a predicate 𝑝 can be disproven by checking satisfiability
of ¬𝑝 and getting a counterexample (a model) from the solver. To prove 𝑝, one shall
check unsatisfiability of ¬𝑝. Looking forward, we usually expect to receive unsat

from SSBee (i.e. the SMT solver backend) as we prove properties. However, if we
receive a sat, it means the solver has found a concrete counterexample for our proofs.
Having said that, we did not encounter sat results (counterexamples) very often in our
verifications of TLS 1.3 or the KEM-DEM example, which made verification harder

37

with almost no help from the tool.

2.5 SSBee

SSBee is a formalization of SSP framework that automates SSP-style reduction proofs
using SMT solvers with minimal help from the user. As illustrated in Section 2.1
with the proof of Theorem 2.4, SSP-style reduction proofs mainly consist of two
kinds of game hops: code equivalence and computational equivalence. Computational
equivalence of two big hybrid games is a standard reduction to indistinguishability
of two small games (the security assumption) using Lemma 2.1 by presenting a
reduction package R and proving two code equivalences 𝐺𝑏

𝑏𝑖𝑔

𝑐𝑜𝑑𝑒≡ R → 𝐺𝑏
𝑠𝑚𝑎𝑙𝑙

for
𝑏 ∈ {0, 1}. For example, in the KEM-DEM paradigm example in the previous section,
the small assumption games were the KEM-CCA and DEM-CCA security assumptions
respectively for the KEM and DEM schemes. SSBee helps cryptographers to automate
proof of their code equivalence game hops as well as verifying their reductions to
security assumptions in computational equivalences.

Figure 8: Theorem 2.4
formalization project di-
rectory in SSBee

SSBee defines a language close to the pseudocodes
shown in Section 2.1 that allows the user to define their
packages, security games (as compositions of these pack-
ages), and finally their security reductions as a sequence
of game hops. SSBee verifies the computational equiva-
lence game hops by checking that the call (composition)
graph of the big security games can be split into a reduc-
tion package and the security assumption game. More
importantly, SSBee verifies the code equivalence game
hops by automating code-based arguments such as the one
presented in 2.7 with an SMT solver. Relying on Theorem
2.3 and Corollary 2.3.1, SSBee requires the user to define
a state relation and tries to prove the given state relation is
invariant as well as the same-output property holds. To this
end, SSBee translates these two proof obligations together
with the code of packages into a set of first-order logic formulae in the SMT-LIB
syntax and asks the SMT solver to prove the formulae are unsatisfiable.

We illustrate the language of SSBee together with its main concepts by formalizing
the KEM-DEM security reduction in Theorem 2.4 in SSBee. Fortunately, we have laid
down the theoretical foundation of SSBee in Section with the proof of Lemma 2.2 and
Theorem 2.3. Theorem 2.4 is formalized in an SSBee project and its code is available
online hosted on a GitHub Repository [Raj25a]. Figure 8 shows the KEM-DEM
formalization SSBee project directory. An SSBee project is a directory including three
subdirectories for the games, proofs, and packages as well as an empty file ssp.toml

at the root of project. We begin by looking at how a security reduction as a sequence
of game hops can be formalized in SSBee in a proof file.

38

2.5.1 Proofs in SSBee

The proof file proof.ssp (in proofs subdirectory) begins with the definition of proof
parameters (or constants) including abstract functions. Listing below shows the
beginning of the proof file:

1 proof Proof {

2 const b: Bool;

3 const len: fn Bits(*) -> Integer;

4 const zeros: fn Integer -> Bits(*);

5 const kem_gen: fn Bits(2000) -> (Bits(100), Bits(1000));

6 const kem_encaps: fn Bits(3000), Bits(100) -> (Bits(256), Bits(400));

7 const kem_decaps: fn Bits(1000), Bits(400) -> Bits(256);

8 const dem_enc: fn Bits(500), Bits(256), Bits(*) -> Bits(*);

9 const dem_dec: fn Bits(256), Bits(*) -> Bits(*);

Abstract functions are function declarations without body. If the user does not
attach meaning to them through lemmata, state relations, or SMT assertions, they
can be essentially considered as uninterpreted functions. One common use case for
them is the declaration of a cryptographic scheme functions which we do not need any
properties from them except for the scheme syntax and its correctness. For instance,
key generation, encapsulation, and decapsulation functions of a KEM scheme or
encryption and decryption functions of the DEM scheme can be modeled as abstract
functions. We later on explain how KEM correctness can be expressed in SSBee.
Abstract functions need a type for each of their arguments and their output. The type
should be one of the builtin types in SSBee. At the time of writing this thesis, SSBee
supports the following types:

Type Syntax Description Literals
Integer Integer Non-negative integers 0, 256, . . .
Boolean Bool Boolean true, false
Bitstring Bits(256) Bitstring of fixed length No literals
Bitstring Bits(n) Bitstring of length n No literals
Bitstring Bits(*) Bitstring of arbitrary length No literals

Table Table(TInput, TOutput) Mapping from TInput to TOutput No literals
Maybe Maybe(T) Option type None, Some(v)
Tuple (T1, T2, ..., TN) Tuple of types T1, . . . , TN (1, true)

We will discuss the types Table, Maybe, and Tuple when illustrating the code of
packages. SSBee currently does not support custom types or higher order functions
(i.e. functions that receive or return a function). However, functions can receive and
return Tables, Tuples, or Maybe types, important features that we will benefit from
in Section 5 when encoding the Hilbert operator in SSBee-assisted proof of Lemma
5.20. Since SSBee does not support any literals for bitstrings, we use zeros function
to generate all-zero strings of the given length. Moreover, SSBee does not consider
any properties for bitstrings and they are translated to independent SMT-LIB data
types. For example, SSBee generates custom SMT-LIB data types with names Bits_*,
Bits_128, or Bits_256 when compiling Bits(*), Bits(128), or Bits(256). Therefore, any
operations on and properties of bistrings, such as their concatenation or retrieving

39

their lengths, shall be handled explicitly by the user. We define function len to return
the length of a bitstring of arbitrary length.

Recall that the functions ΠKEM.𝑔𝑒𝑛, ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠, and ΠDEM.𝑒𝑛𝑐 are randomized.
Since abstract functions in SSBee are deterministic mathematical functions, we make
the randomness explicit by adding an additional argument to these functions for
the randomness string. Arguments with types Bits(2000), Bits(3000), and Bits(500)

are randomness strings for ΠKEM.𝑔𝑒𝑛, ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠, and ΠDEM.𝑒𝑛𝑐, respectively. The
choice of other bitstring lengths is not arbitrary. We have used different lengths for the
public key (Bits(100)), secret key (Bits(1000)), encapsulated key (Bits(400)), encryption
key (Bits(256)), and message (Bits(*)) in order to benefit from SSBee type checker and
easily find key type mismatch bugs during compilation.

Moving forward, the rest of the proof file instantiates the SSP games and their
parameters with concrete values (or possibly proof parameters) before stating the game
hops. We will define two generic SSP games ModularPkeCcaGame and MonolithicPkeCcaGame

corresponding to games Mod𝑏1,𝑏2 (defined in Section 2.5) and 𝐺𝑏,ΠPKE

PKE-CCA (defined in
Section 2.1.1), respectively. We refer to 𝐺𝑏,ΠPKE

PKE-CCA as a monolithic game because it
does not split its functionality into several modular packages. Listing below shows
the instantiation of the real monolithic game 𝐺0,ΠPKE

PKE-CCA and the first hybrid game
𝐻1 := Mod0,0:

1 instance monolithic_pke_cca_real_game = MonolithicPkeCcaGame {

2 params {

3 b: false,

4 len: len,

5 zeros: zeros,

6 kem_gen: kem_gen,

7 kem_encaps: kem_encaps,

8 kem_decaps: kem_decaps,

9 dem_enc: dem_enc,

10 dem_dec: dem_dec,

11 }

12 }

13 instance modular_pke_cca_game_with_real_key_and_real_dem = ModularPkeCcaGame {

14 params {

15 key_idealization: false,

16 dem_idealization: false,

17 len: len,

18 zeros: zeros,

19 kem_gen: kem_gen,

20 kem_encaps: kem_encaps,

21 kem_decaps: kem_decaps,

22 dem_enc: dem_enc,

23 dem_dec: dem_dec,

24 }

25 }

Notice that parameters b, key_idealization, and dem_idealization are instantiated
with concrete values while other game parameters are function parameters and are
instantiated with the abstract functions defined in the beginning of the proof file as
proof parameters.

40

The ideal monolithic game 𝐺1,ΠPKE

PKE-CCA as well as hybrid games 𝐻2 := Mod0,1, 𝐻3 :=
Mod1,1, 𝐻4 := Mod1,0 are instantiated similarly.

The last step before stating the game hops is to state the KEM-CCA and DEM-CCA
security games as well as our security assumption of their indistinguishability.

1 instance kem_cca_game_real = KemCcaGame {

2 params {

3 b: false,

4 kem_gen: kem_gen,

5 kem_encaps: kem_encaps,

6 kem_decaps: kem_decaps,

7 }

8 }

9 instance kem_cca_game_ideal = KemCcaGame

{

10 params {

11 b: true,

12 kem_gen: kem_gen,

13 kem_encaps: kem_encaps,

14 kem_decaps: kem_decaps,

15 }

16 }

1 instance dem_cca_game_real = DemCcaGame {

2 params {

3 b: false,

4 len: len,

5 zeros: zeros,

6 dem_enc: dem_enc,

7 dem_dec: dem_dec,

8 }

9 }

10 instance dem_cca_game_ideal = DemCcaGame

{

11 params {

12 b: true,

13 len: len,

14 zeros: zeros,

15 dem_enc: dem_enc,

16 dem_dec: dem_dec,

17 }

18 }

We then state the assumptions as follows:
1 assumptions {

2 KEM_CCA_Security: kem_cca_game_real ~ kem_cca_game_ideal

3 DEM_CCA_Security: dem_cca_game_real ~ dem_cca_game_ideal

4 }

Finally, we state the game hops. Recall from Section 2.5 that we prove the
equivalence of real and ideal monolithic games 𝐺0,ΠPKE

PKE-CCA and 𝐺1,ΠPKE

PKE-CCA via 5 game
hops: the first and last ones are code equivalence while the three middle hops are
computational equivalence by a standard reduction to KEM-CCA or DEM-CCA
security assumptions.

𝐺
0,ΠPKE

PKE-CCA

𝑐𝑜𝑑𝑒≡ 𝐻1
𝑐𝑜𝑚𝑝
≈ 𝐻2

𝑐𝑜𝑚𝑝
≈ 𝐻3

𝑐𝑜𝑚𝑝
≈ 𝐻4

𝑐𝑜𝑑𝑒≡ 𝐺
1,ΠPKE

PKE-CCA

This is stated in SSBee as follows:
1 gamehops {

2 equivalence monolithic_pke_cca_real_game

modular_pke_cca_game_with_real_kem_and_real_dem {

3 ...

4 }

5

6 reduction modular_pke_cca_game_with_real_kem_and_real_dem

modular_pke_cca_game_with_ideal_key_and_real_dem {

7 assumption KEM_CCA_Security

8 ...

9 }

10

41

11 reduction modular_pke_cca_game_with_ideal_key_and_real_dem

modular_pke_cca_game_with_ideal_key_and_ideal_dem {

12 assumption DEM_CCA_Security

13 ...

14 }

15

16 reduction modular_pke_cca_game_with_ideal_key_and_ideal_dem

modular_pke_cca_game_with_real_kem_and_ideal_dem {

17 assumption KEM_CCA_Security

18 ...

19 }

20

21 equivalence monolithic_pke_cca_ideal_game

modular_pke_cca_game_with_real_kem_and_ideal_dem {

22 ...

23 }

24 }

Listing 1: Proof file

Before diving into the game hops, we describe how our SSP games and packages
can be written in SSBee.

2.5.2 Games and packages in SSBee

We begin by illustrating how SSP packages can be formalized in SSBee. Listing below
shows the SSBee code of package KEY𝑏,𝜆=256.

1 package Key {

2 params {

3 b: Bool

4 }

5

6 state {

7 k: Maybe(Bits(256))

8 }

9

10 oracle SET(kp: Bits(256)) {

11 assert (k == None);

12 if b {

13 k1 <-$ Bits(256);

14 k <- Some(k1);

15 } else {

16 k <- Some(kp);

17 }

18 }

19

20 oracle GET() -> Bits(256) {

21 assert (k != None as Bits(256));

22 return Unwrap(k);

23 }

24 }

A package definition is similar to a class in a programming language. The state

code block describes all the private fields (variables, tables, etc.) of the package. For

42

example, k stores the key with type Maybe(Bits(256)). Maybe type is used to indicate
the key may be null. SSBee does not make any assumption on the initial values
of the fields. Specifically one should assume a Maybe type may contain a null or
some value. Looking ahead to the code equivalence proofs in SSBee and reminding
the fundamental theorem of code equivalence 2.3, when proving code equivalence
obligations such as same-output property or invariance of state relations, the only
assumption about the states of the left and right games is the state relations. However,
it is also crucial to prove the state relation 𝐼 holds for the initial states of the games
(𝑆𝑙0, 𝑆

𝑟
0), i.e. 𝐼 (𝑆𝑙0, 𝑆

𝑟
0). This is currently a missing feature of SSBee and one has to

manually define the initial states of the games and write down the proof obligation to
verify 𝐼 (𝑆𝑙0, 𝑆

𝑟
0) directly using the SMT-LIB language.

Apart from the state, a package can declare some parameters, such as idealization
bits. As we will see in the next section, games have to instantiate packages with
concrete parameters. Analogous to class analogy for the packages, instances of a
package correspond to objects of a class. Parameters can be used as constants or
readonly variables, which can not be assigned to, in the code of oracles of the package,
but they are not global constants or and can vary between instances of a package. An
integer parameter n can be a special type parameter if it is used as the argument of a
Bits(n) type in the code of oracle. In such a situation, SSBee generates different codes
for different concrete values of 𝑛 with which the package is instantiated.

Finally, a package defines all the oracles of its output interface. Oracles may
not return a value such as the oracle SET shown above. However, oracles with a
return should always return a value. SSBee uses the familiar notation <-$ for random
samplings and <- for regular assignments. Currently, SSBee only supports sampling
bitstrings. Some(...) and None are two constructors for the Maybe type. The operation
Unwrap retrieves the value stored in a Maybe type if it is not none. It is crucial to take
into account that c can abort the oracle if the value is none. To achieve this semantics,
SSBee inserts well-definedness assertions before Unwrap in the compiled SMT-LIB
code. Looking ahead again to the code equivalence proofs, it is a common mistake
when verifying proofs in SSBee to overlook these hidden assertions. As a result,
SSBee may fail to prove the same-output property because one oracle, say the left
one, aborts due to an Unwrap operation while the right oracle returns a value. The best
solution that brings visibility to the proof is to precede the Unwrap operations with if
conditions or plain assertions to check for possible null value of the type.

With this introduction we demonstrate other packages useful in the KEM-DEM
formalization project. The following listing show the code of stateless package
KemScheme. We mentioned earlier that we make the randomness used by the KEM
scheme functions ΠKEM.𝑔𝑒𝑛, ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠, andΠDEM.𝑒𝑛𝑐 explicit. Therefore, in order to
use these functions, one has to first sample a random string of proper length (2000 bits
for ΠKEM.𝑔𝑒𝑛 and 3000 bits for ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠) and then feed into to the functions along
possibly their other arguments (e.g. the public key 𝑝𝑘 for ΠKEM.𝑒𝑛𝑐𝑎𝑝𝑠). One reason
for making randomness explicit is that SSBee only supports randomness sampling
for bitstrings while abstract functions are deterministic. Stateless package KemScheme

hides the two-step process of sampling and key computations from the scheme users.
In general, stateless packages are a common technique to reuse blocks of repeatable

43

around the codebase of an SSBee project.
1 package KemScheme {

2 params {

3 kem_gen: fn Bits(2000) -> (Bits(100), Bits(1000)),

4 kem_encaps: fn Bits(3000), Bits(100) -> (Bits(256), Bits(400)),

5 kem_decaps: fn Bits(1000), Bits(400) -> Bits(256),

6 }

7

8 oracle KEM_GEN() -> (Bits(100), Bits(1000)) {

9 r <-$ Bits(2000);

10 return kem_gen(r);

11 }

12

13 oracle KEM_ENCAPS(pk: Bits(100)) -> (Bits(256), Bits(400), Bits(3000)) {

14 r <-$ Bits(3000);

15 k_ek <- kem_encaps(r, pk);

16 (k, ek) <- parse k_ek;

17 return (k, ek, r);

18 }

19

20 oracle KEM_DECAPS(sk: Bits(1000), ek: Bits(400)) -> Bits(256) {

21 return kem_decaps(sk, ek);

22 }

23 }

The package requires the KEM scheme abstract functions and declares them as
parameters. These parameters are instantiated using the proof constants mentioned
earlier. Observe that the oracle KEM_ENCAPS returns the sampled random string to the
scheme user. Although this may sound strange, we will not expose this information to
the adversary, but rather use it only for verification purposes as well as simplifying
state relations in the code equivalence proofs. The first usecase of the randomness
string appears in the next package we introduce: KEM.

1 package KEM {

2 state {

3 pk: Maybe(Bits(100)),

4 sk: Maybe(Bits(1000)),

5 ek: Maybe(Bits(400)),

6 encaps_randomness: Maybe(Bits(3000))

7 }

8

9 import oracles {

10 SET(k: Bits(256)),

11 KEM_GEN() -> (Bits(100), Bits(1000)),

12 KEM_ENCAPS(pk: Bits(100)) -> (Bits(256), Bits(400), Bits(3000)),

13 KEM_DECAPS(sk: Bits(1000), ek: Bits(400)) -> Bits(256),

14 }

15

16 oracle KEMGEN() -> Bits(100) {

17 assert (sk == None);

18 pk_sk <- invoke KEM_GEN();

19 (pk1, sk1) <- parse pk_sk;

20 pk <- Some(pk1);

44

21 sk <- Some(sk1);

22 return pk1;

23 }

24

25 oracle ENCAPS() -> Bits(400) {

26 assert (pk != None as Bits(100));

27 assert (ek == None);

28 k_ek_r <- invoke KEM_ENCAPS(Unwrap(pk));

29 (k, ek1, r) <- parse k_ek_r;

30 encaps_randomness <- Some(r);

31 ek <- Some(ek1);

32 _ <- invoke SET(k);

33 return ek1;

34 }

35

36 oracle DECAPS(encapsk: Bits(400)) -> Bits(256) {

37 assert (sk != None as Bits(1000));

38 assert (encapsk != Unwrap(ek));

39 k <- invoke KEM_DECAPS(Unwrap(sk), encapsk);

40 return k;

41 }

42 }

Compared to the pseudocode of KEM, SSBee code of KEM defines variable ek for the
challenge and an additional state variable encaps_randomness, which stores the internal
random string r sampled by the KEM_ENCAPS oracle. See line 28-30 where the state
variables are assigned to. Although encaps_randomness is not necessary for the main
proof, but it is very useful for the verification and makes the state relations simpler.
Notice that encaps_randomness is also not stored in the package KemScheme because we
want that package to be stateless and expose ready-to-use general scheme function.
Moreover, ENCAPS oracle samples an encapsulated key only once. Further queries to
ENCAPS will abort at line 27. Therefore, storing the random string encaps_randomness is
sound. We borrowed the idea of such state variables from program verification, where
they are called ghost variables. It is important to make sure that ghost variables should
only be used for verification and blindly removing all the lines containing any ghost
variable should not change the semantics of the program (or oracle).

Observe that the package imports four oracles as its input interface. The SET oracle
comes from the package Key while the other three come from the package KemScheme.
Imported oracles are invoked with the keyword invoke. The parse operation is used to
destructure tuples and access their elements.

With these three package, we can now present the definition of the KEM-CCA
security game𝐺𝑏,Π𝜆=256,KEM

KEM-CCA in SSBee. Listing below shows the definition of composition
KemCcaGame.

1 composition KemCcaGame {

2 const b: Bool;

3 const kem_gen: fn Bits(2000) -> (Bits(100), Bits(1000));

4 const kem_encaps: fn Bits(3000), Bits(100) -> (Bits(256), Bits(400));

5 const kem_decaps: fn Bits(1000), Bits(400) -> Bits(256);

6

7 instance pkg_KemScheme = KemScheme {

45

8 params {

9 kem_gen: kem_gen,

10 kem_encaps: kem_encaps,

11 kem_decaps: kem_decaps,

12 }

13 }

14

15 instance pkg_Key = Key {

16 params {

17 b: b

18 }

19 }

20

21 instance pkg_KEM = KEM {

22 }

23

24 compose {

25 pkg_KEM: {

26 SET: pkg_Key,

27 KEM_GEN: pkg_KemScheme,

28 KEM_ENCAPS: pkg_KemScheme,

29 KEM_DECAPS: pkg_KemScheme

30 }

31 adversary: {

32 KEMGEN: pkg_KEM,

33 ENCAPS: pkg_KEM,

34 DECAPS: pkg_KEM,

35 GET: pkg_Key

36 }

37 }

38 }

A game definition begins with declaration of game parameters (idealization
bits, functions, etc) and is followed by the instantiation of packages with concrete
parameters. Notice that the package Key is instantiated with the game parameter b.
Finally, the call graph of the packages are communicated to SSBee with a composition
mapping. Users has to determine which package provides each of the oracles in the
input interface of packages. The keyword adversary helps to determine which oracles
are exposed to the adversary. Games can also be viewed as templates which are then
instantiated with concrete proof constants in the proof file. Using the package and
game definitions, SSBee exports the following call graph together with its TikZ code:
(package parameter is added manually)

pkg_KemScheme

pkg_Key𝑏

pkg_KEM
KEM_GEN
KEM_ENCAPS
KEM_DECAPS

SET

GET

KEMGEN
ENCAPS
DECAPS

Similar to the package KemScheme, we introduce the stateless package DemScheme which

46

hides the sampling process for the DEM scheme encryption function. Random strings
with 500 bits are sampled and fed into the abstract function dem_enc.

1 package DemScheme {

2 params {

3 dem_enc: fn Bits(500), Bits(256), Bits(*) -> Bits(*),

4 dem_dec: fn Bits(256), Bits(*) -> Bits(*)

5 }

6

7 oracle DEM_ENC(k: Bits(256), m: Bits(*)) -> Bits(*) {

8 r <-$ Bits(500);

9 return dem_enc(r, k, m);

10 }

11

12 oracle DEM_DEC(k: Bits(256), c: Bits(*)) -> Bits(*) {

13 return dem_dec(k, c);

14 }

15 }

Notice the type Bits(*) used for messages and ciphertexts of arbitrary length. Next,
we present the SSBee code of the package DEM𝑏,𝜆=256.

1 package DEM {

2 params {

3 b: Bool,

4 len: fn Bits(*) -> Integer,

5 zeros: fn Integer -> Bits(*),

6 }

7

8 state {

9 T: Table(Bits(*), Bool)

10 }

11

12 import oracles {

13 GET() -> Bits(256),

14 DEM_ENC(k: Bits(256), m: Bits(*)) -> Bits(*),

15 DEM_DEC(k: Bits(256), c: Bits(*)) -> Bits(*),

16 }

17

18 oracle ENC(m: Bits(*)) -> Bits(*) {

19 k <- invoke GET();

20 if b {

21 c <- invoke DEM_ENC(k, zeros(len(m)));

22

23 } else {

24 c <- invoke DEM_ENC(k, m);

25 }

26 T[c] <- Some(true);

27 return c;

28 }

29

30 oracle DEC(c: Bits(*)) -> Bits(*) {

31 if (T[c] != None as Bool) {

32 abort;

33 }

47

34 k <- invoke GET();

35 m <- invoke DEM_DEC(k, c);

36 return m;

37 }

38 }

The package defines a table T (instead of set 𝑆 in DEM𝑏,𝜆=256) to store the generated
challenges. Table T is a mapping from bitstrings of arbitrary length to boolean values.
SSBee uses the type Maybe(Bool) for the entries of the table, allowing to model empty
entries of the table. That is why the table entries are assigned to with Some(...)

constructor. In our case, out of three possible values for the entries of the table (null,
true, and false), we only have null or true entries, simulating the set inclusion indicator
function.

The packages uses the abstract function zeros to generate an all-zero bitstring of the
given length because SSBee does not support bitstring literals at the time of writing
this thesis.

With these packages, we can define the DEM-CCA security game 𝐺𝑏,Π𝜆=256,DEM

DEM-CCA in
SSBee. Listing below shows the definition of composition DemCcaGame.

1 composition DemCcaGame {

2 const b: Bool;

3

4 const len: fn Bits(*) -> Integer;

5 const zeros: fn Integer -> Bits(*);

6 const dem_enc: fn Bits(500), Bits(256), Bits(*) -> Bits(*);

7 const dem_dec: fn Bits(256), Bits(*) -> Bits(*);

8

9 instance pkg_DemScheme = DemScheme {

10 params {

11 dem_enc: dem_enc,

12 dem_dec: dem_dec

13 }

14 }

15

16 instance pkg_Key = Key {

17 params {

18 b: true

19 }

20 }

21

22 instance pkg_DEM = DEM {

23 params {

24 b: b,

25 len: len,

26 zeros: zeros,

27 }

28 }

29

30 compose {

31 pkg_DEM: {

32 DEM_ENC: pkg_DemScheme,

33 DEM_DEC: pkg_DemScheme,

34 GET: pkg_Key

48

35 }

36 adversary: {

37 ENC: pkg_DEM,

38 DEC: pkg_DEM,

39 SET: pkg_Key,

40 DEM_DEC: pkg_DemScheme

41 }

42 }

43 }

The structure of the game is very similar to KemCcaGame. Notice that the adversary
is given access to the oracle DEM_DEC of the stateless package DemScheme. This is safe
because the adversary normally has access to and knows the internals of the KEM,
DEM, and PKE schemes. Moreover, the package Key is idealized when instantiated
with 𝑏 = true. SSBee automatically generates the following call graph for this game.

pkg_DemScheme

pkg_Key1

pkg_DEM𝑏

DEM_ENC
DEM_DEC

GET

DEM_DEC

SET

ENC
DEC

Similar to KEM and DEM schemes defines ad stateless packages KemScheme and
DemScheme, we define the following stateless package for a hybrid PKE construction
from a KEM and a DEM scheme.

1 package PkeScheme {

2 import oracles {

3 KEM_GEN() -> (Bits(100), Bits(1000)),

4 KEM_ENCAPS(pk: Bits(100)) -> (Bits(256), Bits(400), Bits(3000)),

5 KEM_DECAPS(sk: Bits(1000), ek: Bits(400)) -> Bits(256),

6 DEM_ENC(k: Bits(256), m: Bits(*)) -> Bits(*) /* ciphertext length */,

7 DEM_DEC(k: Bits(256), c: Bits(*) /* ciphertext length */) -> Bits(*),

8 }

9

10 oracle GEN() -> (Bits(100), Bits(1000)) {

11 pk_sk <- invoke KEM_GEN();

12 return pk_sk;

13 }

14

15 oracle ENC(pk: Bits(100), m: Bits(*)) -> (Bits(400), Bits(*), Bits(3000)) {

16 k_ek_r <- invoke KEM_ENCAPS(pk);

17 (k, ek, r) <- parse k_ek_r;

18 c <- invoke DEM_ENC(k, m);

19 return (ek, c, r);

20 }

21

22 oracle DEC(sk: Bits(1000), c: (Bits(400), Bits(*))) -> Bits(*) {

23 (ek, ctxt) <- parse c;

49

24 k <- invoke KEM_DECAPS(sk, ek);

25 m <- invoke DEM_DEC(k, ctxt);

26 return m;

27 }

28 }

Observe the package imports oracles for the KEM and DEM scheme functionalities.
Since we wish to prove the code equivalence of Mod𝑏,0 and 𝐺𝑏,ΠPKE

PKE-CCA for 𝑏 ∈ {0, 1}
in SSBee, we need to define the modular game Mod𝑏1,𝑏2 and monolithic game 𝐺𝑏,ΠPKE

PKE-CCA.
In order to define the modular game Mod𝑏1,𝑏2 , we need to first define the package Comb

in SSBee. We call this package MOD_CCA in our SSBee project because it is a modular
combiner of packages KEM and DEM.

1 package MOD_CCA {

2 import oracles {

3 KEMGEN() -> Bits(100),

4 ENCAPS() -> Bits(400),

5 DECAPS(ek: Bits(400)) -> Bits(256),

6 ENC(m: Bits(*)) -> Bits(*),

7 DEC(c: Bits(*)) -> Bits(*),

8 DEM_DEC(k: Bits(256), c: Bits(*) /* ciphertext length */) -> Bits(*),

9 }

10

11 state {

12 pk: Maybe(Bits(100)),

13 c: Maybe((Bits(400),Bits(*))),

14 ek: Maybe(Bits(400)),

15 em: Maybe(Bits(*))

16 }

17

18 oracle PKGEN() -> Bits(100) {

19 assert (pk == None);

20 pk1 <- invoke KEMGEN();

21 pk <- Some(pk1);

22 return pk1;

23 }

24

25 oracle PKENC(m: Bits(*)) -> (Bits(400),Bits(*)) {

26 assert (pk != None as Bits(100));

27 assert (c == None);

28 ek1 <- invoke ENCAPS();

29 ek <- Some(ek1);

30 em1 <- invoke ENC(m);

31 em <- Some(em1);

32 c1 <- (ek1, em1);

33 c <- Some(c1);

34 return c1;

35 }

36

37 oracle PKDEC(ek_ctxt: (Bits(400),Bits(*))) -> Bits(*) {

38 assert (pk != None as Bits(100));

39 assert (Unwrap(c) != ek_ctxt);

40 (encapsk, ctxt) <- parse ek_ctxt;

50

41 if (encapsk == Unwrap(ek)) {

42 m <- invoke DEC(ctxt);

43 } else {

44 k <- invoke DECAPS(encapsk);

45 m <- invoke DEM_DEC(k, ctxt);

46 }

47 return m;

48 }

49 }

For the ease of expressing state relations, MOD_CCA stores the encapsulated key ek returned
by ENCAPS and the encrypted message em returned by ENC separately, although they are
both included in the challenge cipher text c. They can be considered ghost variable
because they are used for ease of expressing the state relations. However, the oracle
PKDEC should be modified not to rely on them. Notice how the package imports the oracle
DEM_DEC to call at line 45 when the adversary queries MOD_CCA to decrypt a ciphertext
with a different encapsulated key than the challenge ciphertext.

We can now define the modular game Mod𝑏1,𝑏2 as follows.
1 composition ModularPkeCcaGame {

2 const key_idealization: Bool;

3 const dem_idealization: Bool;

4 const len: fn Bits(*) -> Integer;

5 const zeros: fn Integer -> Bits(*);

6 const kem_gen: fn Bits(2000) -> (Bits(100), Bits(1000));

7 const kem_encaps: fn Bits(3000), Bits(100) -> (Bits(256), Bits(400));

8 const kem_decaps: fn Bits(1000), Bits(400) -> Bits(256);

9 const dem_enc: fn Bits(500), Bits(256), Bits(*) -> Bits(*);

10 const dem_dec: fn Bits(256), Bits(*) -> Bits(*);

11 instance pkg_Key = Key {

12 params {

13 b: key_idealization,

14 }

15 }

16 instance pkg_DemScheme = DemScheme {

17 params {

18 dem_enc: dem_enc,

19 dem_dec: dem_dec

20 }

21 }

22 instance pkg_KemScheme = KemScheme {

23 params {

24 kem_gen: kem_gen,

25 kem_encaps: kem_encaps,

26 kem_decaps: kem_decaps,

27 }

28 }

29 instance pkg_DEM = DEM {

30 params {

31 b: dem_idealization,

32 len: len,

33 zeros: zeros,

34 }

51

35 }

36 instance pkg_KEM = KEM {}

37 instance pkg_MOD_CCA = MOD_CCA {}

38 compose {

39 pkg_KEM: {

40 KEM_GEN: pkg_KemScheme,

41 KEM_ENCAPS: pkg_KemScheme,

42 KEM_DECAPS: pkg_KemScheme,

43 SET: pkg_Key

44 }

45 pkg_DEM: {

46 DEM_ENC: pkg_DemScheme,

47 DEM_DEC: pkg_DemScheme,

48 GET: pkg_Key

49 }

50 pkg_MOD_CCA: {

51 KEMGEN: pkg_KEM,

52 ENCAPS: pkg_KEM,

53 DECAPS: pkg_KEM,

54 ENC: pkg_DEM,

55 DEC: pkg_DEM,

56 DEM_DEC: pkg_DemScheme

57 }

58 adversary: {

59 PKGEN: pkg_MOD_CCA,

60 PKENC: pkg_MOD_CCA,

61 PKDEC: pkg_MOD_CCA

62 }

63 }

64 }

SSBee visualizes this composition as follows:

pkg_Key𝑏2

pkg_DemScheme

pkg_KemScheme

pkg_DEM𝑏1

pkg_KEM

pkg_MOD_CCA
GET

DEM_ENC
DEM_DEC

SET

KEM_GEN
KEM_ENCAPS
KEM_DECAPS

DEM_DEC

ENC
DEC

KEMGEN
ENCAPS
DECAPS

PKGEN
PKENC
PKDEC

In order to define the monolithic security game 𝐺𝑏,ΠPKE

PKE-CCA, we first introduce the
monolithic combiner package MON_CCA that directly utilizes the oracles of PkeScheme.
Recall that we defined the game 𝐺𝑏,ΠPKE

PKE-CCA as a single package parameterized by the

52

PKE scheme. Package MON_CCA uses the same code but instead of being parameterized
with PKE abstract function, imports the oracles of PkeScheme.

1 package MON_CCA {

2 params {

3 b: Bool,

4 len: fn Bits(*) -> Integer,

5 zeros: fn Integer -> Bits(*),

6 }

7

8 import oracles {

9 GEN() -> (Bits(100), Bits(1000)),

10 ENC(pk: Bits(100), m: Bits(*)) -> (Bits(400),Bits(*),Bits(3000)) /* ciphertext

type */,

11 DEC(sk: Bits(1000), c: (Bits(400),Bits(*)) /* ciphertext type */) -> Bits(*),

12 }

13

14 state {

15 pk: Maybe(Bits(100)),

16 sk: Maybe(Bits(1000)),

17 c: Maybe((Bits(400),Bits(*)))

18 }

19

20 oracle PKGEN() -> Bits(100) {

21 assert (sk == None);

22 pk_sk <- invoke GEN();

23 (pk1, sk1) <- parse pk_sk;

24 pk <- Some(pk1);

25 sk <- Some(sk1);

26 return pk1;

27 }

28

29 oracle PKENC(m: Bits(*)) -> (Bits(400),Bits(*)) {

30 assert (pk != None as Bits(100));

31 assert (c == None);

32 if b {

33 c1 <- invoke ENC(Unwrap(pk), zeros(len(m)));

34 } else {

35 c1 <- invoke ENC(Unwrap(pk), m);

36 }

37 (ek, c2, r) <- parse c1;

38 c <- Some((ek, c2));

39 return (ek, c2);

40 }

41

42 oracle PKDEC(ek_ctxt: (Bits(400),Bits(*))) -> Bits(*) {

43 assert (sk != None as Bits(1000));

44 assert (Unwrap(c) != ek_ctxt);

45 m <- invoke DEC(Unwrap(sk), ek_ctxt);

46 return m;

47 }

48 }

Notice that the package itself is parameterized with an idealization bit 𝑏 analogous

53

to definition of 𝐺𝑏,ΠPKE

PKE-CCA as a standalone monolithic parametrized package. Finally, we
define the security game 𝐺𝑏,ΠPKE

PKE-CCA as follows:
1 composition MonolithicPkeCcaGame {

2 const b: Bool;

3 const len: fn Bits(*) -> Integer;

4 const zeros: fn Integer -> Bits(*);

5 const kem_gen: fn Bits(2000) -> (Bits(100), Bits(1000));

6 const kem_encaps: fn Bits(3000), Bits(100) -> (Bits(256), Bits(400));

7 const kem_decaps: fn Bits(1000), Bits(400) -> Bits(256);

8 const dem_enc: fn Bits(500), Bits(256), Bits(*) -> Bits(*);

9 const dem_dec: fn Bits(256), Bits(*) -> Bits(*);

10

11 instance pkg_KemScheme = KemScheme {

12 params {

13 kem_gen: kem_gen,

14 kem_encaps: kem_encaps,

15 kem_decaps: kem_decaps,

16 }

17 }

18

19 instance pkg_DemScheme = DemScheme {

20 params {

21 dem_enc: dem_enc,

22 dem_dec: dem_dec

23 }

24 }

25

26 instance pkg_PkeScheme = PkeScheme {

27 }

28

29 instance pkg_MON_CCA = MON_CCA {

30 params {

31 b: b,

32 len: len,

33 zeros: zeros,

34 }

35 }

36

37 compose {

38 pkg_PkeScheme: {

39 KEM_GEN: pkg_KemScheme,

40 KEM_ENCAPS: pkg_KemScheme,

41 KEM_DECAPS: pkg_KemScheme,

42 DEM_ENC: pkg_DemScheme,

43 DEM_DEC: pkg_DemScheme

44 }

45 pkg_MON_CCA: {

46 GEN: pkg_PkeScheme,

47 ENC: pkg_PkeScheme,

48 DEC: pkg_PkeScheme

49 }

50 adversary: {

51 PKGEN: pkg_MON_CCA,

54

52 PKENC: pkg_MON_CCA,

53 PKDEC: pkg_MON_CCA

54 }

55 }

56 }

SSBee visualizes the game as follows:

pkg_KemScheme

pkg_DemScheme

pkg_PkeScheme

pkg_MON_CCA
KEM_GEN
KEM_ENCAPS
KEM_DECAPS

DEM_ENC
DEM_DEC

GEN
ENC
DEC

PKGEN
PKENC
PKDEC

2.6 Proofs in SSBee: Revisited

Looking back to the game hops, there were five game hops from 𝐺
0,ΠPKE

PKE-CCA to 𝐺1,ΠPKE

PKE-CCA.
The first and last game hops were code equivalence and the middle three were
computational game hops (reductions to KEM-CCA and DEM-CCA security).

2.6.1 Reductions

We illustrate one of the computational game hops (reductions) as others are structured
analogously. Consider the first computational game hop between the first two hybrid
games 𝐻1 := Mod0,0 and 𝐻2 := Mod0,1. Indistinguishability of 𝐻1 and 𝐻2 reduces to
the KEM-CCA security (i.e. indistinguishability of the games 𝐺𝑏,ΠKEM

KEM-CCA for 𝑏 ∈ {0, 1}).
As proved in the Claim 2.5, 𝐻1+𝑏

𝑐𝑜𝑑𝑒≡ R1 → 𝐺
𝑏,ΠKEM

KEM-CCA for 𝑏 ∈ {0, 1}. Reduction R1
(visualized in Figure 6) are cuts in the call graphs of the games Mod0,0 and Mod0,1 such
that when removed, games 𝐺𝑏,ΠKEM

KEM-CCA are left.
To formally verify the reduction from the games 𝐻1+𝑏 to𝐺𝑏,ΠKEM

KEM-CCA with the reduction
package R1 in SSBee, we need to give a hint to SSBee how the reduction package R1
is constructed. We give this information by describing how the packages of 𝐻1+𝑏 are
mapped to the corresponding packages packages of the assumption games 𝐺𝑏,ΠKEM

KEM-CCA

when R1 is removed. As a result, all other packages can be composed and considered
to be the reduction R1.

1 /* First hop idealizes KEM and reduces to KEM-CCA security */

2 reduction modular_pke_cca_game_with_real_kem_and_real_dem

modular_pke_cca_game_with_ideal_kem_and_real_dem {

3 assumption KEM_CCA_Security

4

5 map kem_cca_game_real modular_pke_cca_game_with_real_kem_and_real_dem {

6 pkg_KemScheme: pkg_KemScheme

7 pkg_Key: pkg_Key

8 pkg_KEM: pkg_KEM

9 }

10

11 map kem_cca_game_ideal modular_pke_cca_game_with_ideal_kem_and_real_dem {

55

12 pkg_KemScheme: pkg_KemScheme

13 pkg_Key: pkg_Key

14 pkg_KEM: pkg_KEM

15 }

16 }

For each mapping, SSBee expects one of the real or ideal games of the assumption
is mapped to the one of the given games. Moreover, each mapping shall be bijective:
it maps each package instances of the assumption game to a distinct package instance
of the given game. Notice that it is only due to our naming covention that mapped
packages have the same name. Generally speaking, the structure of a reduction from a
game pair (𝐺0, 𝐺1) to a assumption game pair (𝐴0, 𝐴1) is as follows:

1 assumptions {

2 A: A0 ~ A1

3 ...

4 }

5 ...

6 reduction G0 G1 {

7 assumption A

8

9 map A0 G0 {

10 PA0_1: PG0_1,

11 PA0_2: PG0_2,

12 ...

13 }

14 map A1 G1 {

15 PA1_1: PG1_1,

16 PA1_2: PG1_2,

17 ...

18 }

19 }

For each pair of mapped games (e.g. 𝐴0 ↦→ 𝐺0), SSBee verifies that mapped
package instances (e.g. PA0_1 and PG0_1) are (1) instances of the same package and
(2) instantiated with the same parameters. As a result, mapped packages have the
same output interface. SSBee does not need to generate SMT-LIB code to verify these
properties and checks these conditions algorithmically.

2.6.2 Code equivalence

We now look into how a code equivalence game hop can be verified in SSBee. Instead
of proving each of the game hops 𝐺0,ΠPKE

PKE-CCA

𝑐𝑜𝑑𝑒≡ 𝐻1 or 𝐺1,ΠPKE

PKE-CCA

𝑐𝑜𝑑𝑒≡ 𝐻4 separately as
shown in the Listing 1 previously, we prove both at the same time using a proof
constant 𝑏. (We used the same technique in proof of Claim 2.7 and proved𝐺 𝑙 := Mod𝑏,0

is code equivalent to 𝐺𝑟 := 𝐺𝑏,ΠPKE

PKE-CCA.) We instantiate the idealization parameters of the
monolithic game 𝐺𝑏,ΠPKE

PKE-CCA and modular game Mod𝑏,0 with the proof constant 𝑏 instead
of concrete values true or false.

1 proof Proof {

2 const b: Bool;

56

3 instance monolithic_pke_cca_game = MonolithicPkeCcaGame {

4 params {

5 b: b,

6 len: len,

7 zeros: zeros,

8 kem_gen: kem_gen,

9 kem_encaps: kem_encaps,

10 kem_decaps: kem_decaps,

11 dem_enc: dem_enc,

12 dem_dec: dem_dec,

13 }

14 }

15 instance modular_pke_cca_game_with_real_kem = ModularPkeCcaGame {

16 params {

17 key_idealization: false,

18 dem_idealization: b,

19 len: len,

20 zeros: zeros,

21 kem_gen: kem_gen,

22 kem_encaps: kem_encaps,

23 kem_decaps: kem_decaps,

24 dem_enc: dem_enc,

25 dem_dec: dem_dec,

26 }

27 }

28 ...

29 }

Game monolithic_pke_cca_game corresponds to𝐺𝑏,ΠPKE

PKE-CCA while modular_pke_cca_game_with_real_kem

corresponds to Mod𝑏,0. Notice that the same constant 𝑏 is used to instantiate both
games. We then prove the equivalence of the games as follows:

1 equivalence monolithic_pke_cca_game modular_pke_cca_game_with_real_kem {

2 PKGEN: {

3 invariant: [

4 ./proofs/invariant.smt2

5]

6

7 lemmas {

8 invariant: [no-abort]

9 same-output: [no-abort]

10 equal-aborts: []

11 }

12 }

13

14 PKENC: {

15 invariant: [

16 ./proofs/invariant.smt2

17]

18

19 lemmas {

20 invariant: [no-abort, lemma-rand-is-eq]

21 same-output: [no-abort, lemma-rand-is-eq]

22 equal-aborts: []

57

23 }

24 }

25

26 PKDEC: {

27 invariant: [

28 ./proofs/invariant.smt2

29]

30

31 lemmas {

32 invariant: [no-abort]

33 same-output: [no-abort, lemma-kem-correctness]

34 equal-aborts: []

35 }

36 }

37 }

Listing 2: Code equivalence in SSBee

SSBee relies on the Fundamental Theorem of Code Equivalence (Theorem 2.3) to
prove the code equivalence of the given games. Namely, it asks the user to proivde
a state relation 𝐼 and a randomness mapping 𝑀 using the SMT-LIB language and
then tries to prove the same-output property for each oracle exposed by the games ad
well as the invariance of the state relation 𝐼. Additionally, it allows the user to express
lemmata to prove each of the proof obligations. Clearly, the proof is only sound when
all the lemmata themselves are also proved.

For each of the oracles exposed by the games 𝐺𝑏,ΠPKE

PKE-CCA and Mod𝑏,0, SSBee allows
us to present a list of SMT-LIB files to express state relations, lemmata, randomness
mapping, and custom theories and asssertions for the abstarct functions. Although the
keyword invariant is used for the list of SMT-LIB files, SSBee does not check their
contents and concatenate all files when compiling the final SMT-LIB output. This
allows to organize the SMT-LIB files based on their content and reuse them for different
oracles. We have benefitted from this feature in the TLS 1.3 key schedule verification.
There are three built-in lemmata that should be proved: invariant, same-output, and
equal-aborts. We have to highlight that the same-output property defined in Section 2.9
are split into two lemmata same-output and equal-aborts in SSBee. Lemma same-output

states that the left and right oracles return the same output but shall not abort (given all
other conditions stated in 2.9). Lemma equal-aborts requires that the left oracle aborts
if and only if the right oracle aborts. Unlike the formalization of Theorem 2.3, SSBee
does not consider an oracle abort as a special output. Lemma invariant requires to
prove invariance of the presented state relations. SSBee allows the user to express
a list of lemmata in front of each lemma. These lemmata on the right are assumed
when trying to prove the lemma on the left. For example, the built-in lemma no-abort

states that games do not abort and is assumed when proving the lemma invariant and
same-output but not for equal-aborts. Lemma no-abort can not be proved as a standalone
lemma but can be added as a dependency for any other lemma. For all lemmata, SSBee
assumes the state relation holds in the old game states. Therefore, it is not needed to
add invariant in front of the lemmata. Informally, SSBee tries to prove the following

58

basic properties:

ssbee-randomness-mapping ∧ invariant(old-states) ∧ no-abort =⇒ invariant(new-states)
ssbee-randomness-mapping ∧ invariant(old-states) ∧ no-abort =⇒ same-output
ssbee-randomness-mapping ∧ invariant(old-states) =⇒ equal-aborts

For each lemma lemma1: [lemma2, lemma3], SSBee proves:

ssbee-randomness-mapping ∧ invariant(old-states) ∧ lemma2 ∧ lemma3 =⇒ lemma1

Formally, these properties are expressed as first order logic formulae in SMT-LIB
as follows. We encourage the reader to refer back to the definitions 2.9 and 2.7 of the
same-output property and invariant state relations, respectively.

For same-output:

⎛⎜⎜⎜⎜⎜⎝
(𝑆𝑙old, 𝑆

𝑟
old) ∈ 𝐼∧

(𝑦𝑙 , 𝑆𝑙new) ← 𝑂𝑙 (𝑥, 𝑆𝑙old)∧
(𝑦𝑟 , 𝑆𝑟new) ← 𝑂𝑟 (𝑥, 𝑆𝑟old)∧
𝑦𝑙 ≠ abort ∧ 𝑦𝑟 ≠ abort∧

ssbee-randomness-mapping(𝑆𝑙old, 𝑆
𝑟
old)

⎞⎟⎟⎟⎟⎟⎠
=⇒ 𝑦𝑙 = 𝑦𝑟

For equal-aborts:

⎛⎜⎜⎜⎝
(𝑆𝑙old, 𝑆

𝑟
old) ∈ 𝐼∧

(𝑦𝑙 , 𝑆𝑙new) ← 𝑂𝑙 (𝑥, 𝑆𝑙old)∧
(𝑦𝑟 , 𝑆𝑟new) ← 𝑂𝑟 (𝑥, 𝑆𝑟old)∧

ssbee-randomness-mapping(𝑆𝑙old, 𝑆
𝑟
old)

⎞⎟⎟⎟⎠ =⇒
(︂
(𝑦𝑙 = abort) ⇔ (𝑦𝑟 = abort)

)︂
For invariance:

⎛⎜⎜⎜⎜⎜⎝
(𝑆𝑙old, 𝑆

𝑟
old) ∈ 𝐼∧

(𝑦𝑙 , 𝑆𝑙new) ← 𝑂𝑙 (𝑥, 𝑆𝑙old)∧
(𝑦𝑟 , 𝑆𝑟new) ← 𝑂𝑟 (𝑥, 𝑆𝑟old)∧
𝑦𝑙 ≠ abort ∧ 𝑦𝑟 ≠ abort∧

ssbee-randomness-mapping(𝑆𝑙old, 𝑆
𝑟
old)

⎞⎟⎟⎟⎟⎟⎠
=⇒ (𝑆𝑙new, 𝑆

𝑟
new) ∈ 𝐼

SSBee feeds these SMT-LIB formulae to its backend SMT solver (currently CVC5)
one by one for each lemma and reports the SMT solver output. If it receives unsat, it
reports the property is proved and proceeds to the next lemma. If it receives unknown,
it stops and reports to the user that the proof has failed. Only if it receives sat, it
outputs the model as a counterexample generated by the SMT solver.

2.6.3 Randomness mapping

The major difference of the three proof obligations in previous section with the
definitions 2.9 and 2.7 are the randomness mapping. Although the formalization
of Theorem 2.3 makes the randomness explicit and add the randomness string as

59

an argument to the oracles and adversary, SSBee chooses a different approach
without adding extra arguments to the adversaries. Conceptually, SSBee considers a
randomness tape for each randomness sampling operation in the game. SSBee then
stores (in the state of the game) an integer counter 𝑐𝑡𝑟 as the tape index of the next
randomness string string to be consumed from the randomness tape for each of the
sampling operations in the game. When a sampling occurs, the counter is incremented
as if the tape pointer advances to the next index. When proving equivalence of two
games, SSBee assigns a unique integer identifier 𝑖𝑑 (in each game) to each sampling
operation <-$ in the code. (One can think of it as the identifier of the randomness
tape.) For example, in the game MonolithicPkeCcaGame, SSBee assigns 0 to the sampling
r <-$ Bits(2000), 1 to the r <-$ Bits(3000) in package KemScheme, and 2 to the r <-$ Bits

(500) in package DemScheme. However, in game ModularPkeCcaGame, SSBee assigns 0 to
the sampling k1 <-$ Bits(256) in package in Key, 1 to the r <-$ Bits(500) in package
DemScheme, 2 to the r <-$ Bits(2000), and 3 to the r <-$ Bits(3000) in package KemScheme.
Following pseudocodes are generated as part of the LaTeX export of SSBee for the
game MonolithicPkeCcaGame. Randomness sampling identifiers are marked over arrows.

pkg_KemScheme

KEM_GEN()

r
0
←$ {0, 1}2000

return kem_gen(r)

KEM_ENCAPS(pk)

r
1
←$ {0, 1}3000

k_ek← kem_encaps(r, pk)
parse k_ek as

(︁
k, ek

)︁
return

(︁
k, ek, r

)︁

pkg_DemScheme

DEM_ENC(k,m)

r
2
←$ {0, 1}500

return dem_enc(r, k,m)

For the game ModularPkeCcaGame:

60

pkg_Key

SET(kp)
assert k = ⊥
if b then

k1
0
←$ {0, 1}256

k← k1
else

k← kp

pkg_DemScheme

DEM_ENC(k,m)

r
1
←$ {0, 1}500

return dem_enc(r, k,m)

pkg_KemScheme

KEM_GEN()

r
2
←$ {0, 1}2000

return kem_gen(r)

KEM_ENCAPS(pk)

r
3
←$ {0, 1}3000

k_ek← kem_encaps(r, pk)
parse k_ek as

(︁
k, ek

)︁
return

(︁
k, ek, r

)︁
In the next step, when SSBee translates a randomness sampling operation such as

r <-$ Bits(2000), it replaces the operation with sample(𝑖𝑑, 𝑐𝑡𝑟𝑖𝑑) where sample is an
abstract function to be defined by ssbee-randomness-mapping and 𝑐𝑡𝑟𝑖𝑑 is the tape
index of tape 𝑖𝑑 stored in the game state.

Since the sampled values are outputs of uninterpreted abstract functions, without the
randomness mapping they can have any value, modeling a random string. Therefore,
SSBee asks the user to provide a randomness mapping function for each oracle exposed
to the adversary. A randomness mapping states which sampling operations from the
left and right are assumed to sample the same values from their mapped randomness
tapes. The following listing shows the randomness sampling we have defined for the
KEM-DEM example:

1 (define-fun randomness-mapping-PKGEN

2 (

3 (sample-ctr-old-monolithic_pke_cca_game Int)

4 (sample-ctr-old-modular_pke_cca_game_with_real_kem Int)

5 (sample-id-monolithic_pke_cca_game Int)

6 (sample-id-modular_pke_cca_game_with_real_kem Int)

7 (sample-ctr-monolithic_pke_cca_game Int)

8 (sample-ctr-modular_pke_cca_game_with_real_kem Int)

9)

10 Bool

11 (or

12 (and

13 (= sample-ctr-monolithic_pke_cca_game sample-ctr-old-monolithic_pke_cca_game)

14 (= sample-ctr-modular_pke_cca_game_with_real_kem sample-ctr-old-

modular_pke_cca_game_with_real_kem)

15 (= sample-id-monolithic_pke_cca_game 0)

16 (= sample-id-modular_pke_cca_game_with_real_kem 2)

17)

18)

19)

20

61

21 (define-fun randomness-mapping-PKENC

22 (

23 (sample-ctr-old-monolithic_pke_cca_game Int)

24 (sample-ctr-old-modular_pke_cca_game_with_real_kem Int)

25 (sample-id-monolithic_pke_cca_game Int)

26 (sample-id-modular_pke_cca_game_with_real_kem Int)

27 (sample-ctr-monolithic_pke_cca_game Int)

28 (sample-ctr-modular_pke_cca_game_with_real_kem Int)

29)

30 Bool

31 (or

32 (and

33 (= sample-ctr-monolithic_pke_cca_game sample-ctr-old-monolithic_pke_cca_game)

34 (= sample-ctr-modular_pke_cca_game_with_real_kem sample-ctr-old-

modular_pke_cca_game_with_real_kem)

35 (= sample-id-monolithic_pke_cca_game 2)

36 (= sample-id-modular_pke_cca_game_with_real_kem 1)

37)

38 (and

39 (= sample-ctr-monolithic_pke_cca_game sample-ctr-old-monolithic_pke_cca_game)

40 (= sample-ctr-modular_pke_cca_game_with_real_kem sample-ctr-old-

modular_pke_cca_game_with_real_kem)

41 (= sample-id-monolithic_pke_cca_game 1)

42 (= sample-id-modular_pke_cca_game_with_real_kem 3)

43)

44)

45)

Observe how the corresponding sampling operations from the left and right are mapped
to each other (e.g. Sampling 0 from the left to sampling 2 on the right).

Now we can present the definition of ssbee-randomness-mapping used by the proof
obligations:

ssbee-randomness-mapping(𝑆𝑙old, 𝑆
𝑟
old) (ssbee-randomness-mapping)

:= ∀𝑖𝑑left, 𝑖𝑑right, 𝑐𝑡𝑟left, 𝑐𝑡𝑟right

(︂
randomness-mapping-ORACLE(𝑐𝑡𝑟𝑖𝑑left (𝑆𝑙old), 𝑐𝑡𝑟𝑖𝑑right (𝑆𝑟old), 𝑖𝑑left, 𝑖𝑑right, 𝑐𝑡𝑟left, 𝑐𝑡𝑟right)

=⇒ sample(𝑖𝑑left, 𝑐𝑡𝑟left) = sample(𝑖𝑑right, 𝑐𝑡𝑟right)
)︂

where 𝑐𝑡𝑟𝑖𝑑left (𝑆𝑙old) and 𝑐𝑡𝑟𝑖𝑑right (𝑆𝑟old) are the randomness tape indices stored in the
game state at the beginning of the oracle call. In other words, the mapping only happens
for the cases the user has specified in the function randomness-mapping-ORACLE.
The distinction of the base tape index 𝑐𝑡𝑟𝑖𝑑left (𝑆𝑙old) at the beginning of the oracle call
from the quantified tape index 𝑐𝑡𝑟left allows the user to specify randomness mappings
even when two values are sampled from the same sampling operation. This can
happen, for example, if the sampling operation lives in an oracle that is called twice.

62

2.6.4 Invariants

We finally present our state relations in file invariant.smt2 referenced by the Listing
1. SSBee requires us to define a function called invariant and express all the state
relations over the given game states. One can easily determine the selector functions
that can be applied to the game states to extract states of the packages in the games.

1 (define-fun invariant

2 (

3 (state-left <GameState_MonolithicPkeCcaGame_<$<!b!>$>>) ; left

4 (state-right <GameState_ModularPkeCcaGame_<$<!false!><!b!>$>>) ; right

5)

6 Bool

7 (let

8 (

9 (left_pk (<pkg-state-MON_CCA-<$<!b!>$>-pk> (<game-MonolithicPkeCcaGame-<$<!b

!>$>-pkgstate-pkg_MON_CCA> state-left)))

10 (left_sk (<pkg-state-MON_CCA-<$<!b!>$>-sk> (<game-MonolithicPkeCcaGame-<$<!b

!>$>-pkgstate-pkg_MON_CCA> state-left)))

11 (right_pk_mod_cca (<pkg-state-MOD_CCA-<$$>-pk> (<game-ModularPkeCcaGame-<$<!

false!><!b!>$>-pkgstate-pkg_MOD_CCA> state-right)))

12 (right_pk_kem (<pkg-state-KEM-<$$>-pk> (<game-ModularPkeCcaGame-<$<!false!><!

b!>$>-pkgstate-pkg_KEM> state-right)))

13 (left_c (<pkg-state-MON_CCA-<$<!b!>$>-c> (<game-MonolithicPkeCcaGame-<$<!b!>$

>-pkgstate-pkg_MON_CCA> state-left)))

14 (right_c (<pkg-state-MOD_CCA-<$$>-c> (<game-ModularPkeCcaGame-<$<!false!><!b

!>$>-pkgstate-pkg_MOD_CCA> state-right)))

15 (right_kem_ek (<pkg-state-KEM-<$$>-ek> (<game-ModularPkeCcaGame-<$<!false!><!

b!>$>-pkgstate-pkg_KEM> state-right)))

16 (right_mod_cca_ek (<pkg-state-MOD_CCA-<$$>-ek> (<game-ModularPkeCcaGame-<$<!

false!><!b!>$>-pkgstate-pkg_MOD_CCA> state-right)))

17 (right_dem_c (<pkg-state-MOD_CCA-<$$>-em> (<game-ModularPkeCcaGame-<$<!false

!><!b!>$>-pkgstate-pkg_MOD_CCA> state-right)))

18 (right_key_k (<pkg-state-Key-<$<!key_idealization!>$>-k> (<game-

ModularPkeCcaGame-<$<!false!><!b!>$>-pkgstate-pkg_Key> state-right)))

19 (right_sk (<pkg-state-KEM-<$$>-sk> (<game-ModularPkeCcaGame-<$<!false!><!b!>$

>-pkgstate-pkg_KEM> state-right)))

20 (right_encaps_randomness (<pkg-state-KEM-<$$>-encaps_randomness> (<game-

ModularPkeCcaGame-<$<!false!><!b!>$>-pkgstate-pkg_KEM> state-right)))

21 (right_T (<pkg-state-DEM-<$<!dem_idealization!>$>-T> (<game-ModularPkeCcaGame

-<$<!false!><!b!>$>-pkgstate-pkg_DEM> state-right)))

22)

23 (and

24 (= left_pk right_pk_mod_cca right_pk_kem) ; (1)

25 (= ((_ is mk-none) left_pk) ((_ is mk-none) left_sk) ((_ is mk-none)

right_pk_mod_cca) ((_ is mk-none) right_pk_kem) ((_ is mk-none) right_sk)) ; (1) and

(2)

26 (= left_c right_c) ; (3)

27 (= ((_ is mk-none) left_c) ((_ is mk-none) right_c) ((_ is mk-none)

right_kem_ek) ((_ is mk-none) right_mod_cca_ek) ((_ is mk-none) right_dem_c) ((_ is

mk-none) right_key_k)) (4)

28 (= left_sk right_sk) ; (1)

29 (= right_mod_cca_ek right_kem_ek) ; (*)

30 (=> ((_ is mk-none) right_pk_kem) ((_ is mk-none) right_c)) ; (4)

63

31 (=> ; (7)

32 (not ((_ is mk-none) right_c))

33 (= (maybe-get right_c) (mk-tuple2 (maybe-get right_mod_cca_ek) (maybe-get

right_dem_c)))

34)

35 (=> ; (**)

36 (not ((_ is mk-none) right_key_k))

37 (and

38 (= (maybe-get right_key_k) (el2-1 (<<func-proof-kem_encaps>> (maybe-

get right_encaps_randomness) (maybe-get right_pk_kem))))

39 (= (maybe-get right_kem_ek) (el2-2 (<<func-proof-kem_encaps>> (maybe-

get right_encaps_randomness) (maybe-get right_pk_kem))))

40)

41)

42 (forall ; (5)

43 (

44 (x Bits_*)

45)

46 (and

47 (=>

48 ((_ is mk-none) right_c)

49 ((_ is mk-none) (select right_T x))

50)

51 (=>

52 (not ((_ is mk-none) right_c))

53 (= (= x (maybe-get right_dem_c)) (not ((_ is mk-none) (select

right_T x))))

54)

55)

56)

57)

58)

59)

We have annotated each state relation that corresponds to a state relation in
Definition 2.13. (Notice that left and right games are swapped.) The state relation (*)

uses the ghost state ek of the package MOD_CCA. Moreover, state relation (**) uses the
ghost state encaps_randomness.

We want to emphasize that the same state relations and lemmata are used to verify
equivalence game hops 𝐺0,ΠPKE

PKE-CCA

𝑐𝑜𝑑𝑒≡ 𝐻1 and 𝐺1,ΠPKE

PKE-CCA

𝑐𝑜𝑑𝑒≡ 𝐻4 separately. Refer to the
repository [Raj25a] to see the invariant files.

As mentioned before, SSBee, at the time of writing this thesis, does not check the
state relation holds in the initial game states. One has to first construct initial states
S0_left and S0_right themselves. (Usually all state variables are none and tables map
all entries to none.) In the next step they have to query the SMT solver with (assert (

not (invariant S0_left S0_right))). Notice the negation of (invariant S0_left S0_right) is
used to prove the invariant holds in the initial states.

64

2.6.5 KEM scheme correctness property as a lemma

We expressed the correctness property of the KEM scheme, necessary to prove the
same-output property of the oracle PKDEC, as a lemma. Initially, we defined the property
as an assertion in the followin listing:

1 (assert

2 (forall

3 (

4 (gen-r Bits_2000)

5 (encaps-r Bits_3000)

6)

7 (let

8 (

9 (pk (el2-1 (<<func-proof-kem_gen>> gen-r)))

10 (sk (el2-2 (<<func-proof-kem_gen>> gen-r)))

11)

12 (let

13 (

14 (k (el2-1 (<<func-proof-kem_encaps>> encaps-r pk)))

15 (ek (el2-2 (<<func-proof-kem_encaps>> encaps-r pk)))

16)

17 (= k (<<func-proof-kem_decaps>> sk ek))

18)

19)

20)

21)

However, this results in unknown result from the SMT solver. Instead, we helped
the SMT solver by adding it as a lemma for the same-output lemma as follows:

1 (define-fun <relation-lemma-kem-correctness-monolithic_pke_cca_game-

modular_pke_cca_game_with_real_kem-PKDEC>

2 (

3 (old-state-left <GameState_MonolithicPkeCcaGame_<$<!b!>$>>)

4 (old-state-right <GameState_ModularPkeCcaGame_<$<!false!><!b!>$>>)

5 (return-left <OracleReturn-MonolithicPkeCcaGame-<$<!b!>$>-MON_CCA-<$<!b!>$>-PKDEC

>)

6 (return-right <OracleReturn-ModularPkeCcaGame-<$<!false!><!b!>$>-MOD_CCA-<$$>-

PKDEC>)

7 (ek_ctxt (Tuple2 Bits_400 Bits_*))

8)

9 Bool

10 (let

11 (

12 (pk (<pkg-state-KEM-<$$>-pk> (<game-ModularPkeCcaGame-<$<!false!><!b!>$>-

pkgstate-pkg_KEM> old-state-right)))

13 (sk (<pkg-state-KEM-<$$>-sk> (<game-ModularPkeCcaGame-<$<!false!><!b!>$>-

pkgstate-pkg_KEM> old-state-right)))

14)

15 (=>

16 (not ((_ is mk-none) pk))

17 (forall

18 (

19 (r Bits_3000)

65

20)

21 (let

22 (

23 (k (el2-1 (<<func-proof-kem_encaps>> r (maybe-get pk))))

24 (ek (el2-2 (<<func-proof-kem_encaps>> r (maybe-get pk))))

25)

26 (= k (<<func-proof-kem_decaps>> (maybe-get sk) ek))

27)

28)

29)

30)

31)

Notice that we don’t need quantification on the randomness string gen-r used to
generate the public/secret key pair because we only need to express the property for
the already generated key pair in the game state.

2.6.6 Randomness mapping issue

When proving the same-output lemma for the oracle PKENC, we needed to map the
randomness samplings both in the package Key and DEM to generate an encryption key
and encrypt a message, respectively. Earilier, we presented the randomness mapping
function for the oracle PKENC which mapped two sampling points. We observed that
multiple randomness mappings can be tricky for the SMT solvers as they have difficulty
instantiating universal quantifier in equation ssbee-randomness-mapping. Precisely,
the function randomness-mapping-PKENC specifies mapping of sampling point 2 from the
left to sampling point 1 from the right. In a small experiment with CVC5, we asked
CVC5 to prove sample(2, 𝑐) = sample(1, 𝑐′) or sample(1, 𝑐) = sample(3, 𝑐′) when
given the function randomness-mapping-PKENC and assuming

∀𝑖𝑑left, 𝑖𝑑right, 𝑐𝑡𝑟left, 𝑐𝑡𝑟right

(︂
randomness-mapping-PKENC(𝑐, 𝑐′, 𝑖𝑑left, 𝑖𝑑right, 𝑐𝑡𝑟left, 𝑐𝑡𝑟right)

=⇒ sample(𝑖𝑑left, 𝑐𝑡𝑟left) = sample(𝑖𝑑right, 𝑐𝑡𝑟right)
)︂

for arbitrary 𝑐 and 𝑐′. In all runs, we received an unknown result. However, the same
obligation was proved quickly with Z3.

To prevent unknown results and ensure fast verification, we help the SMT solver
with quantifier instantiation and express the follwoing randomness mappings directly
as lemma lemma-rand-is-eq.

sample(2, 𝑐𝑡𝑟2(𝑆𝑙old)) = sample(1, 𝑐𝑡𝑟1(𝑆𝑟old))
sample(1, 𝑐𝑡𝑟1(𝑆𝑙old)) = sample(3, 𝑐𝑡𝑟3(𝑆𝑟old))

Nevertheless, we leave more investigation of this issue to a future work. Concretely,
we speculate that proper e-matching patterns for the universal quantifier can help the
SMT solver to instantiate the quantifier properly.

66

2.7 How to run SSBee?

At the time of writing this thesis, SSBee is a command line application being actively
developed by Chris Brzuska, Christoph Egger, and Jan Winkelmann using Rust
programming language. Therefore, to use SSBee, one needs to have a working Rust
installation on their system. The next step is moving to the SSBee project directory
containing the ssp.toml file and running cargo run -p ssbee prove -t. The -t instructs
SSBee to output the SMT-LIB file in the _build directory before feeding in into the
SMT sovler. The other useful command is cargo run -p ssbee latex which exports the
packages and all the composition digrams in LaTeX, such as the ones shown in the
previous section.

67

3 TLS 1.3 Key Schedule

In this section, we give an overview of internals of TLS 1.3 handshake, key schedule
as well as its security analysis. Although explicitly mentioned, many figures and
pseudocodes in this section are adopted from the paper of [BDLE+21], which forms
the basis of this thesis.

3.1 TLS 1.3 Handshake and Key Schedule

TLS 1.3 standard [Res18] specifies a key exchange protocol that allows two internet
endpoints, a client (initiator) and server, to authenticate each other, agree on a freshly
generated secret shared key, and achieve a secure channel to send messages. Key sched-
ule refers to all cryptographic key computation operations that derive the shared secret
key among other keys. TLS 1.3 supports three modes of authentication: certificate-
based authentication with (Elliptic Curve) Ephemeral Diffie-Hellman (EC)DHE key
exchange (dh_ke), pre-shared key (PSK) authentication with (EC)DHE key exchange
(psk_dh_ke), and PSK only authentication without (EC)DHE key exchange (psk_ke).
The last authentication mode (psk_ke) comes with weaker security guarantees, most
importantly at the cost of no forward secrecy for application data. Forward secrecy
refers to the security notion that current session keys still remain secure even though
long term keys (such as PSKs) are compromised in the future, hence the name forward
secrecy.

xtr xtr xpdxpd xtr xpd

xpd

session resumption

xpd

New Session Ticket:

MAC of :

Client Hello:
Binders:

Server Hello:

Certificate:
Signature over :
MAC over :

Figure 9: TLS 1.3 message flow on the left and key schedule overview on the right
(copied with permission from [BDLE+21]): messages in brackets are encrypted with
the key in the subscript

TLS 1.3 handshake protocol comprises of seven main key exchange messages:
Client Hello (CH), Server Hello (SH), EncryptedExtensions (EE), Server Certificate
𝐶 (𝑝𝑘), Server CertificateVerify 𝐶𝑉 (𝜎), Server Finished (SF), and Client Finished
(CF) messages. The first message (CH) aims for cryptographic negotiation as well as
sharing random nonces 𝑛𝑐 along with Diffie-Hellman (DH) shares {𝑔𝑥𝑖

𝑖
} for supported

groups with the server. Moreover, in case of PSK-based authentication modes (i.e.
psk_dh_ke or psk_ke), client sends identities {𝑙𝑎𝑏𝑒𝑙 𝑗 } of pre-shared keys, one of which
shall be chosen by the server if is is known to them. CH message also contains a

68

xpd

xpd

xpd

xtr xtr

xtr

...

...

xpd

xpdxpd

Parent name(s):
𝑛: 𝑛1 𝑛2
es: 0salt psk
eem: es ⊥
cet: es ⊥
bind: es ⊥
binder: bind ⊥
hs: esalt dh
sht: hs ⊥
cht: hs ⊥
hsalt: hs ⊥
as: hsalt 0ikm
rm: as ⊥
cat: as ⊥
sat: as ⊥
eam: as ⊥
psk: rm ⊥

𝑘es ← xtr(𝑘psk, 𝑘0salt)
𝑘bind ← xpd(𝑘es, ext/res binder, [])
𝑘binder ← xpd(𝑘bind, [], 𝑑bind)
𝑘cet ← xpd(𝑘es, c e traffic, 𝑑es)
𝑘eem ← xpd(𝑘es, e exp master, 𝑑es)
𝑘esalt ← xpd(𝑘es, derived, [])
𝑘hs ← xtr(𝑘esalt, 𝑘dh)
𝑘cht ← xpd(𝑘hs, c hs traffic, 𝑑hs)
𝑘sht ← xpd(𝑘hs, s hs traffic, 𝑑hs)
𝑘hsalt ← xpd(𝑘hs, derived, [])

𝑘as ← xtr(𝑘hsalt, 𝑘0ikm)
𝑘cat ← xpd(𝑘as, c ap traffic, 𝑑as)
𝑘sat ← xpd(𝑘as, s ap traffic, 𝑑as)
𝑘eam ← xpd(𝑘as, exp master, 𝑑as)
𝑘rm ← xpd(𝑘as, res master, 𝑑rm)
𝑘 ′psk ← xpd(𝑘rm, resumption, tn)
𝑘psk, 𝑘0ikm, 𝑘0salt ← 0len(alg)

𝜏𝑠/𝑐 ← deriveFin(𝑘sht/𝑘cht, 𝑑sf /𝑑as)
𝜎 ← sign(𝑠𝑘, 𝑑𝑠𝑖𝑔)

𝑘ae{1,2,3} ← TLS record layer derivations

hmacalg(𝑘, 𝑡)
ipad← 0𝑥36blocksize(alg)

opad← 0𝑥5𝐶blocksize(alg)

𝑘† ← 𝑘 ∥0 |ipad |− |𝑘 |

inner← hash-alg(𝑘† ⊕ ipad)∥𝑡
𝑑 ← hash-alg((𝑘† ⊕ opad)∥inner)
return 𝑑

xpd-alg(𝑘1, (label, 𝑑))
if label = [] :

return hmacalg(𝑘1, 𝑑)
t← (len(𝑎𝑙𝑔), tls13 ∥label, 𝑑)∥0𝑥01
𝑘 ← hmacalg(𝑘1, 𝑡)
return 𝑘

xtr-alg(𝑘1, 𝑘2)
𝑘 ← hmacalg(𝑘1, 𝑘2)
return 𝑘

Figure 10: TLS 1.3 key schedule with more details (copied with permission from
[BDLE+21]). Notice “xpd” operation with empty label [] (used only for derivation
of 𝑘𝑏𝑖𝑛𝑑𝑒𝑟) is essentially an HMAC operation instead of HKDF-Expand as illustrated
in the pseudocode. BDEFKK treat this operation identical to other xpd operations
as pseudorandomness and collision resistance assumptions apply both to HMAC
and HKDF-Expand. 𝑎𝑙𝑔 ∈ {sha256, sha384, sha512} is the hash algorithm used by
HMAC.

69

binder values 𝑘𝑏𝑖𝑛𝑑𝑒𝑟, 𝑗 for each PSK identity {𝑙𝑎𝑏𝑒𝑙 𝑗 } 9 Binder values are computed
from PSK, which serves as a proof for client knowledge of PSK to the server and
binding the current handshake to PSK. It is noteworthy that cryptographic negotiation
helps the client and server to agree on the supported elliptic curve or finite field
group, signature algorithms, authenticated-encryption-and-associated-data (AEAD)
algorithms, and hash functions, among others. DH shares, PSK identities, and binder
values are sent among other “extensions” in the Client Hello. Figure 9 and 10 depicts
the cryptographic interesting parts of TLS 1.3 message flow. If the server partially
agrees with cryptographic parameters offered by the client, it may send a Hello Retry
Request due to insufficient information in the CH message, prompting the client
to send another CH message with completed information. If the server is able to
negotiate an acceptable set of handshake parameters with the client, it will send
the SH message. SH message contains (in plaintext) server’s random nonce 𝑛𝑠,
server’s DH share 𝑔𝑦

𝑖0
for exactly one of the agreed groups 𝑖0, and in case of psk_dh_ke

mode, selected PSK identity 𝑙𝑎𝑏𝑒𝑙 𝑗0 . At this point, server can compute DH secret
𝑘𝑑ℎ = (𝑔𝑥𝑖0

𝑖0
)𝑦 = 𝑔

𝑥𝑖0 𝑦

𝑖0
. Client can also compute the same DH secret after receiving

server’s DH share in SH message. In the follow-up messages, server encrypts the
certificate𝐶 (𝑝𝑘), certificate verify𝐶𝑉 (𝜎) message, and Server Finished (SF) message
under the record layer encryption key 𝑘𝑎𝑒1. Certificate 𝐶 (𝑝𝑘) contains server’s public
key 𝑝𝑘 and a certificate authority’s (CA) signature over server public key, Certificate
verify 𝐶𝑉 (𝜎) message contains the signature 𝜎 over the hash digest of handshake
transcript 𝑑𝑠𝑖𝑔 (marked in Figures 9 and 10) under server’s private key. SF message
contains the message authentication code (MAC) over digest of handshake transcript
𝑑 𝑓 𝑖𝑛 for key confirmation. The encryption protects aforementioned messages from
passive attackers. The MAC tag 𝜏𝑠 is computed using the Server Finished MAC key.
SF MAC key and record layer encryption key 𝑘𝑎𝑒1 are both derived from the server
handshake traffic secret 𝑘𝑠ℎ𝑡 .

As soon as the server sends the SF message, both client and server can derive
client/server application traffic secrets 𝑘𝑐𝑎𝑡 , 𝑘𝑠𝑎𝑡 , and exporter (application) master
secret 𝑘𝑒𝑎𝑚 from master secret 𝑘𝑎𝑠 and the hash digest of transcript until the end of
SF message. Exporter master secret can be used by the higher level protocols or
applications as a pseudorandom shared key established between the endpoints for their
own purposes.

Finally, client verifies the signature in the SF message, and computes a MAC
tag 𝜏𝑐 over digest of handshake transcript 𝑑𝑎𝑠 for key confirmation. The MAC tag is
computed using Client Finished MAC key. The tag itself is also encrypted with the
record layer key 𝑘𝑎𝑒2. The CF MAC key together with 𝑘𝑎𝑒2 are derived from client
handshake traffic secret 𝑘𝑐ℎ𝑡 . Figure 10 illustrates how 𝑘𝑠ℎ𝑡 and 𝑘𝑐ℎ𝑡 are derived by the
key schedule using the HKDF-Extract (xtr) and HKDF-Expand (xpd) applied to hash
of handshake transcripts and input keys (DH secret 𝑘𝑑ℎ and PSK 𝑘 𝑝𝑠𝑘). HKDF-Extract

9Binder value is the TLS 1.3 standard terminology. However, in the rest of the thesis and also in
analysis of [BDLE+21], binder values are called binder keys. Confusingly enough, TLS 1.3 standard
refers to 𝑘𝑏𝑖𝑛𝑑 (illustrated in figure 10) as binder keys while we call them bind keys, although we don’t
refer to them very often.

70

and HKDF-Expand are HMAC-based key derivation functions introduced by Krawczyk
[Kra10] and standardized by IETF [KE10]. HMAC is a message authentication code
(MAC) based on a cryptographic hash function [BCK96]. TLS 1.3 supports three
hash functions sha256, sha384, and sha512 respectively with output lengths 256, 384,
and 512 bits to be used by HMAC operations. The choice of hash function is agreed
upon during cryptographic negotiation as part of Client Hello and the same hash
function is used by all HKDF-Extract and HKDF-Expand in the key schedule. The
rationale behind using HKDF functions for a key exchange protocol was pioneered in
OPTLS protocol [KW15] which also inspired design of TLS 1.3. Briefly, in the TLS
1.3 key schedule, HKDF-Extract is considered to be a randomness extractor generating
a pseudorandom key given two high-entropy inputs (keying material). HKDF-Expand
is considered to be psuedorandom function (PRF) computing a pseduorandom value
given a label (such as c hs traffic) and a hash digest (hash of transcript up to some
message). Refer to Figure 10 for the definition of xtr, xpd, and HMAC.

After the handshake, endpoints transmit encrypted application messages using the
AEAD algorithms (agreed during the handshake) and encryption keys generated by
the key schedule. TLS 1.3 record protocol specifies the format of transmitted messages
(including handshake messages). Ironically, handshake protocol concerns three other
messages called post-handshake messages sent after the handshake is finished : key
and initialization vector updates, post-handshake client authentication, and new session
ticket (NST) message. Server sends NST message to the client at some point after
the handshake is completed (i.e. when Client Finished message is received by the
server). The message includes information (ticket value and ticket nonce) that can be
used by the client to derive a new PSK to authenticate the server (and for the server to
authenticate the client) in a future session instead of exchanging certificates again.
The future session authentication is bound to the current handshake and, hence, called
resumed session. Similarly, the new PSK is called resumption PSK. The NST message
includes ticket value (label in the diagram), which can be any unique label or identity
suitable for future server lookup, ticket nonce, ticket lifetime, among others. Ticket
values are used as PSK identities by the client to give a clue to the server of which PSK
or PSKs client is willing to use. As illustrated in the third column of Figure 10 or at
the very right of Figure 9, resumption PSK can be computed by applying the expander
(a PRF) on the ticket nonce sent by the server under the resumption master secret 𝑘𝑟𝑚
derived from keys and digest of transcript of the current session. In this thesis, we
refer to the initial PSK shared out-of-band between the endpoints by external PSK
or application PSK. Notice that the binder values in the Client Hello message binds
the current handshake (resumed session) to the previous handshake from which the
PSK was generated (and transitively to the initial handshake). As a final note, PSK
identities may be meaningless unique lookup keys issued by the server to lookup the
PSK identity offered by the client in a database stored by the server (stateful server) or
rather be an encrypted and authenticated object to restore the state of the server upon
client offering the object to the server (stateless server).

Similar to exporter master secret, key schedule generates early exporter master
secret 𝑘𝑒𝑒𝑚 from PSK in 0-RTT for higher application layer early encryption purposes
(for example in a resumed session). Analogous to application traffic secrets, key

71

schedule generates client early traffic secret 𝑘𝑐𝑒𝑡 for 0-RTT encrypted application
traffic.

In addition to DH secret 𝑘𝑑ℎ and PSK 𝑘 𝑝𝑠𝑘 , 𝑘0𝑠𝑎𝑙𝑡 and 𝑘0𝑖𝑘𝑚 are fixed zero input
keys (salts), i.e. 𝑘0𝑠𝑎𝑙𝑡 = 𝑘0𝑖𝑘𝑚 = 0. Although extractor xtr is applied to 𝑘 𝑝𝑠𝑘 under the
fixed zero salt to derive 𝑘𝑒𝑠 (or to 𝑘ℎ𝑠𝑎𝑙𝑡 and 𝑘0𝑖𝑘𝑚 to derive 𝑘𝑎𝑠, see Figure 10), xtr or
the underlying HMAC is assumed to be dual pseudorandom function. Moreover, TLS
1.3 standard requires that in dh_ke key exchange mode where PSKs are not used, 𝑘 𝑝𝑠𝑘
is replaced with zero. Similarly, in psk_ke key exchange mode where Diffie-Hellman
key exchange is not performed, 𝑘𝑑ℎ is again replaced zero. TLS 1.3 requires that all
zero bitstrings used in the key schedule (namely 𝑘0𝑠𝑎𝑙𝑡 , 𝑘0𝑖𝑘𝑚, 𝑘 𝑝𝑠𝑘 in dh_ke mode,
and 𝑘𝑑ℎ in psk_ke mode) have the same length as the outputs of the hash function used
by HMAC. Since HMAC pads its key with zeros to obtain a key of the size of output
of hash function (see HMAC construction in the bottom of Figure 10), we consider
𝑘0𝑠𝑎𝑙𝑡 = 0 to be the single bit zero string while other zero keys are all-zero bitstrings
with the same length as the output of the hash function.

In conclusion, given the DH secret 𝑘 𝑝𝑠𝑘 and the PSK 𝑘 𝑝𝑠𝑘 as input, TLS 1.3
key schedule generates eight output keys 𝑘𝑐𝑒𝑡 , 𝑘𝑒𝑒𝑚, 𝑘𝑏𝑖𝑛𝑑𝑒𝑟 , 𝑘𝑐ℎ𝑡 , 𝑘𝑠ℎ𝑡 , 𝑘𝑐𝑎𝑡 , 𝑘𝑠𝑎𝑡 , 𝑘𝑒𝑎𝑚
for the use of handshake layer (𝑘𝑏𝑖𝑛𝑑𝑒𝑟 for Client Hello and 𝑘𝑐ℎ𝑡 , 𝑘𝑠ℎ𝑡 for Client and
Server Finished messages), record layer (𝑘𝑐𝑒𝑡 , 𝑘𝑐ℎ𝑡 , 𝑘𝑠ℎ𝑡 , 𝑘𝑐𝑎𝑡 , 𝑘𝑠𝑎𝑡), and application
layer (𝑘𝑒𝑒𝑚, 𝑘𝑒𝑎𝑚). We refer to all other keys (other than output and input keys) as
internal keys. 10 Nevertheless, this creates a boundary for the key schedule for the
security model to capture pseudorandomness and uniqueness of these eight keys.

3.1.1 Towards a key schedule security model

To motivate for the security model, key schedule shall generate pseudorandom and
unique output keys if at least one of the input keying material sources (DH secrets or
PSKs) are honestly generated (i.e. unknown to an adversary). For instance, one honesty
combination is when DH secret is honest because of an authenticated Diffie-Hellman
key exchange but PSK may be dishonest and known to the adversary because of
using all-zero bitstring in dh_ke mode or a compromised long term PSK (modeling
forward secrecy). Another honesty combination may involves a dishonest DH secret
because of using all-zero bitstring in psk_ke mode but an honest PSK. When both
DH secret and PSK are honest and unknown to the adversary, we can capture the
security in psk_dh_ke mode. Key uniqueness is required for the key exchange security.
Essentially, a key exchange protocol aims to achieve distinct keys for distinct sessions.
This property translates to distinct and unique output keys derived by the key schedule.

TLS 1.3 key schedule achieves key pseudorandomness by applying a series of
HKDF-Extract and HKDF-Expand operations to the input keys (DH secret 𝑘𝑑ℎ and

10Notice that 𝑘𝑐ℎ𝑡 , 𝑘𝑠ℎ𝑡 are unfortunately used both for encryption of handshake messages and
deriving MAC keys. Moreover, 𝑘𝑠𝑎𝑡 is used to derive encryption keys (after key updates) for encryption
of both server application traffic as well as the special handshake message New Session Ticket sent
after the handshake completion by the server. BDEFKK [BDLE+21] suggest in their paper that higher
modularity is enforced to separate the keys used for MAC computation and encryption of handshake
messages as well as NST message encryption and application traffic encryption.

72

PSK 𝑘 𝑝𝑠𝑘). Moreover, it achieves key uniqueness by involving digest of the handshake
during key derivations. Let us highlight the importance of transcript digests in the
protocol as well as its application in key uniqueness. Transcript digests (including
nonces, identities, cryptographic parameters, DH shares, etc.) allow the endpoints to
make sure key confirmations and signatures have been freshly generated for the current
session with the peer’s expected key material, implying liveness of the peer and also
preventing man-in-the-middle attacks. More importantly, without the transcript digests
and specifically Diffie-Hellman shares themselves and their order, an attacker is able
to generate colliding dishonest DH secrets, breaking output key uniqueness. Imagine
two endpoints exchange DH shares (𝑔𝑥 , 𝑔𝑦). Without the transcripts, (𝑔𝑦, 𝑔𝑥) will also
have the same DH secret 𝑔𝑥𝑦. Even worse, if the adversary is actively intercepting
communication of two honest endpoints 𝑋 and 𝑌 who respectively send DH shares 𝑔𝑥
and 𝑔𝑦 to the adversary, it can force the sessions keys to collide by offering (𝑔𝑦)𝑟 to 𝑋
and (𝑔𝑥)𝑟 to 𝑌 for adversarially chosen 𝑟. Both sessions end up with the DH secret
𝑔𝑥𝑦𝑟 (even unknown to the adversary) which can lead to further attacks.

A similar collision attack that breaks output key uniqueness arises from PSKs.
As discussed before, TLS 1.3 allows authentication through out-of-band pre-shared
keys (external or application PSKs) or resumption PSKs (obtained from a previously
authenticated session using New Session Ticket message sent by the server). Imagine
a scenario where a malicious server Charlie shares a PSK with an honest server Bob
and Bob sends a New Session Ticket message to Charlie so he can resume the session
in future with a resumption PSK 𝐾 . Now consider the malicious server Charlie agrees
with (or forces) victim client Alice to share the same resumption PSK 𝐾 with her
as an out-of-band application PSK. Although Bob believes he shares PSK 𝐾 with
Charlie, which is in fact the case, he shares the same key with Alice too, while alice
believes she only shares a key with Charlie. Therefore, Charlie can forward encrypted
messages from Alice to Bob without modifications and they will be accepted by Bob.
(Nonces and PSK identities can also be forwarded and reused by Charlie by resuming
his session once again with both Alice and Bob.) This attack is a case of Unknown
key-share (UKS) attack, which can lead to unwanted and devastating attacks in higher
level protocols based on message contents. Since many applications use TLS for an
authenticated and secure channel, it best to prevent UKS attacks at this level rather
than delegating to application developers to check for vulnerability. For instance, if
Bob is an access control server and Charlie is a compromised server trusted by Alice
and successful key agreement leads to unauthorized access granted to Charlie. Refer
to [BWM99] for other scenarios and discussion.

TLS 1.3 prevents collision of dishonest application and resumption PSKs by
distinguishing these keys with labels ext binder or res binder when deriving binder
key (𝑘𝑏𝑖𝑛𝑑) which in turn is used to derive binder value 𝑘𝑏𝑖𝑛𝑑𝑒𝑟 sent in the Client Hello
message and included in the handshake for all other output key derivations. As a
result, Charlie can not simply forward messages from Alice to Bob as Bob does not
accept the binder value due to PSK type mismatch in Client Hello. Therefore, all
output keys (including 𝑘𝑏𝑖𝑛𝑑𝑒𝑟) enjoy uniqueness despite the possibility of collision for

73

dishonest PSKs. 11

3.2 Key Schedule Security Model

BDEFKK [BDLE+21] model the security of the key schedule as indistinguishability
of a real and an ideal game in State Separating Proofs (SSP) framework. The adversary
can instruct the real game to generate (1) random honest 12 application PSKs and
DH shares/secrets, (2) store dishonest 13 application PSKs or DH shares/secrets, (3)
perform key derivations with xpd and xtr operations using both honest and dishonest
keys to compute internal and output keys, and (4) retrieve the output key values from
the game.

To describe the ideal game, we extend the definition of honesty to internal and
output keys and refer to a key (internal or output) as honest if it is derived from at least
one honest input keying material (honest DH shares or random application PSKs chosen
by the game and unknown to the adversary). In the ideal game, the adversary interacts
with a simulator that shall simulate all the aforementioned functionalities in the real
game except the the output key retrieval that is replaced by an ideal functionality. This
ideal functionality returns randomly chosen keys to the adversary upon derivation of
honest output keys (those that were derived from at least one honest input source),
modeling key pseudorandomness. Additionally, upon derivation of an output key, the
ideal functionality makes sure that the key is unique and distinct from all other keys,
hence modeling key uniqueness.

The key schedule security model is an example of simulation-based security
definition in SSP where the adversary is interacting with a simulator and an ideal
functionality. Interestingly, the simulator shall simulate key derivations of all internal
keys without having access to the output keys, generated by the ideal functionality and
returned only to the adversary.

The real and ideal games are compositions of several SSP packages, each or some
of which provide one or some of the quadruple functionalities exposed to the adversary.
We will define the real (Gks0) and ideal (Gks1(S)) security games in Section 3.2.8 and
present the pseudocode of SSP packages used in the games in Section 3.2.7. Looking
ahead, we sketch the security analysis of BDEFKK in Section 3.3. Notice that the
ideal game Gks1(S) is parameterized by a simulator package S. BDEFKK construct a
concrete simulator with the required input and output interface, and only then reduce
the indistinguishability of Gks0 and Gks1(S) to the standard security assumptions for

11Interestingly, binder values together with ext/res labels were introduced to TLS 1.3 in draft 17
following the post handshake client authentication attack found by [CHSvdM16] in their analysis of
draft 10. The attack allowed a malicious server trusted by victim Alice to impersonate Alice to another
honest server Bob. The attacker could forward nonces and PSK identities and since there was no binder
value in the protocol at the time, client signatures on the handshake during client authentication, only
included reused nonces and reused identities without any binding to material (only known to Alice
and her peer, Charlie) which made the signature valid for reuse in Charlie-Bob session. However, the
attack did not cause a collision of PSKs (between Charlie and Bob or Charlie and Alice) but a failure of
“higher” level mechanism (client authentication) on top of session resumption through PSKs.

12chosen by the game and only known to the game
13adversarially chosen

74

(dual) pseudorandomness and collision resistance of xtr and xpd functions, among
others. Before these sections, we explain key concepts in the security model.

Counter-intuitively, the adversary can not see the actual values for honest keys in
the ideal or real game. This restriction comes from the key exchange security modeling
where the adversary does not have access to internal key computations but rather may
control the input keys and observe the output keys. In order to allow the adversary to
perform key derivations without knowing internal keys, game assigns administrative
identifiers to the keys called “handles” and only return the handles to the adversary.
Therefore, when the adversary instructs the game to generate honest keys (fresh DH
shares or random application PSKs), the game returns a handle to the generated key
and logs a mapping from the handle to the key value in a private table. When the
adversary wants to perform key derivation using the handles, the game looks up the
handle in its private log table to extract the actual key values, computes the derived
key (internal or output) using xpd and xtr operations, returns a handle to the derived
key to the adversary and again logs a mapping from the handle to the derived key.
For homogenous key handling, the game also returns a handle for dishonest input,
internal and output keys even though the adversary knows the corresponding key
values and instructs the game itself to store these keys. See [Koh23] for an example
of handle-based security definition for a pseudorandom function (PRF), where the
adversary can evaluate the PRF on game-chosen random (honest) keys as well as
adversarially-chosen (dishonest) keys, capturing multiple-key PRF evaluation security.

3.2.1 Cryptographic Agility

Recall that HMAC can be used with three hash functions sha256, sha384, and sha512

in TLS 1.3. The security model allows the adversary to determine the hash function
algorithm that is used for key derivations when instructing the game to generate an
honest (or store a dishonest) application PSK as part of the handle data. Therefore,
the adversary can perform key derivations with the same application PSK but under
different hash functions. However, when the adversary chooses a hash function as part
of an application PSK handle, the same hash function is used for derivation of all other
keys derived from the same application PSK handle. The security model enforces
this restriction by tagging all keys with a hash algorithm and tagging computed keys
during key derivation with the same algorithm as the input keys. It then ensures the
computed key inherits the same hash algorithm tag as the input keys. Even in the
dh_ke mode where a zero key is used for key derivation instead of an application
PSK, the adversary has the chance to determine the hash function algorithm for key
derivation which affects the key length. This property of the security model that
supports various hash function algorithms is called cryptographic agility. Recall that
output length of each of these three hash algorithms are different. For a hash algorithm
𝑎𝑙𝑔 ∈ {sha256, sha384, sha512}, we denote its output length by len(𝑎𝑙𝑔).

75

3.2.2 Handles

Key handles are recursive data structures that encompass information, among others,
about the key derivation steps and the hash function algorithm tag 𝑎𝑙𝑔 used by HMAC.
There are four types of primary base handles corresponding to the four base keys 𝑘𝑑ℎ,
𝑘 𝑝𝑠𝑘 , 𝑘0𝑠𝑎𝑙𝑡 , and 𝑘0𝑖𝑘𝑚: dh⟨sort(𝑋,𝑌)⟩ for DH secret 𝑔𝑥𝑦 constructed from DH shares
𝑋 = 𝑔𝑥 and 𝑌 = 𝑔𝑦 where sort(𝑋,𝑌) lexicographically sorts description of group
elements 𝑋 and 𝑌 ; psk⟨𝑐𝑡𝑟, 𝑎𝑙𝑔⟩ for application PSKs with counter 𝑐𝑡𝑟 to distinguish
different external PSKs and hash algorithm 𝑎𝑙𝑔 chosen by the adversary; 0salt for
the fixed zero key 𝑘0𝑠𝑎𝑙𝑡 = 0; and 0ikm⟨𝑎𝑙𝑔⟩ for the fixed zero key 𝑘0𝑖𝑘𝑚 = 0len(𝑎𝑙𝑔)

and adversarially chosen 𝑎𝑙𝑔. The goal of sorting DH shares 𝑋 and 𝑌 is to have
dh⟨sort(𝑋,𝑌)⟩ = dh⟨sort(𝑌, 𝑋)⟩ and prevent two distinct handles for the same key
𝑔𝑥𝑦. This is critical for the Salted Oracle Diffie Hellman Assumption, one of the
assumptions to which the security of key schedule is reduced. Refer to Section 5 for
the statement of this assumption and its analysis. To avoid redundancy in the security
model, 𝑘0𝑠𝑎𝑙𝑡 is a single zero bit because it is used as an HMAC key and HMAC pads
keys shorter than its hash function block size with zeros.

With the primary base handles, the security model supports all possible input key
combinations in the psk_dh_ke mode. To support psk_ke and dh_ke modes, the model
introduces two additional base handles noDH⟨𝑎𝑙𝑔⟩ and noPSK⟨𝑎𝑙𝑔⟩. A noDH⟨𝑎𝑙𝑔⟩
handle can be used in psk_ke mode to refer to the absent DH secret replaced by an
all-zero bitstring while a noPSK⟨𝑎𝑙𝑔⟩ handle can be used in dh_ke mode for the
absent application PSK replaced by an all-zero bistring. Recall that TLS 1.3 requires
that zero keys have the same length as the output of the hash function. Therefore,
noDH⟨𝑎𝑙𝑔⟩ and noPSK⟨𝑎𝑙𝑔⟩ are handles to the keys of form 0len(𝑎𝑙𝑔) . We consider
the hash algorithm tag of the handles and keys to be nullable. Notice that the only keys
with empty (null) algorithm tags are 𝑘𝑑ℎ and 𝑘0𝑠𝑎𝑙𝑡 . Observe that handles of these two
keys also have empty (null) algorithm tags.

3.2.3 Handle-based key derivation

The adversary can request key derivations with xtr and xpd operations using the base
handles and receive derived handles. These derived handles can again be passed to xtr
and xpd to derive further keys, which forms a hierarchy of handles. For instance, the
derivation tree below illustrates how a handle to client handshake traffic key 𝑘𝑐ℎ𝑡 is
constructed in psk_dh_ke mode.

76

ℎcht = xpd⟨cht, c hs traffic, ℎhs, 𝑡hs⟩

ℎhs = xtr⟨hs, ℎesalt, ℎdh⟩

ℎesalt = xpd⟨esalt, derived, ℎes, []⟩

ℎes = xtr⟨hs, ℎ0salt, ℎpsk⟩

0salt psk⟨𝑐𝑡𝑟, 𝑎𝑙𝑔⟩

ℎdh = dh⟨sort(𝑋,𝑌)⟩

Generally, handles of derived keys have the following structures:

xtr⟨name, left parent handle, right parent handle⟩,
xpd⟨name, label, parent handle, other arguments⟩.

where the label is at most 12 characters and used for deriving keys with xpd and name
is the key name, such as cht. other arguments is either empty [], the transcript itself
(for example 𝑡hs in the tree above is the raw transcript before being fed into the hash
function to obtain the digest 𝑑hs), or ticket nonce (for derivation of resumption PSKs).
See Figure 10 for all the labels used for various keys. Observe that except for 𝑘bind,
there is exactly one label for each key that is derived with an xpd operation. The only
exception is the bind key 𝑘bind, which is derived with either label ext binder or res
binder depending on whether an application PSK or resumption PSK is used.

As mentioned earlier, key computations and hence handles construct a key (and
handle) hierarchy. Observe that each handle (key) has 0, 1, or 2 parents. Handles with
zero parents are the base handles and correspond to DH secrets, application PSKs,
and fixed salts. Handles with one parent correspond to the keys derived with an xpd
operation, a label, and possibly a hash digest of transcript or new session ticket nonce,
hence expand handles or keys. Handles with two parents corresponds to the keys
derived with an xtr operation (i.e. 𝑘es, 𝑘hs, 𝑘as), hence extract handle or keys. Notice
that handles of application PSKs have no parents while handles of resumption PSKs,
i.e. xpd⟨psk, resumption, ℎrm, 𝑡𝑛⟩, are computed with an xpd operation applied to the
handle of a resumption master secret ℎrm, label resumption, and the new session ticket
nonce 𝑡𝑛. See parent name table on the right of Figure 10.

3.2.4 Key names and parents

For ease of referencing, let 𝑁 be the set of all key names in TLS 1.3, 𝑁xpd be the set of
all expand keys whose last derivation step is an xpd operation, and 𝑁xtr := {es, hs, as},
set of all extract keys whose last derivation step is an xtr operation. Here, we consider
that psk is derived with xpd from the resumption master secret (as resumption PSK)

77

instead of a base key; hence, 𝑁xpd = 𝑁 \ {es, hs, as, dh, 0salt, 0ikm}. Additionally, we
define two functions PrntN and Labels to be used in the pseudocode of packages.
Let 𝑁⊥ := (𝑁 ∪ {⊥}) and PrntN : 𝑁 → 𝑁⊥ × 𝑁⊥ be a function that returns
the parents (𝑛1, 𝑛2) = PrntN(𝑛) for each key name 𝑛. For instance, PrntN(es) =
(0salt, psk), PrntN(psk) = (rm,⊥), and PrntN(dh) = (⊥,⊥). Looking ahead, Figure
11 summarizes all the key names and their parents as a directed graph. Observe that
extract keys have two parents, expand keys have exactly one parent, and base keys
have no parents. Moreover, let Labels : 𝑁xpd × {ext, res,⊥} → {0, 1}96 be a function
that returns the 12-character (12 × 8 = 96 bits) label Labels(𝑛, 𝑟) used for deriving
expand key 𝑛 ∈ 𝑁xpd. We use 𝑟 = ⊥ for all 𝑛 ≠ bind and 𝑟 ∈ {ext, res} for 𝑛 = bind.
For example, Labels(cht,⊥) = c hs traffic, Labels(bind, ext) = ext binder, and
Labels(bind, res) = res binder.

3.2.5 Agile handles

Recall that all base handles except ℎ0salt include the information about the hash
algorithm 𝑎𝑙𝑔 used by HMAC. Notice we can still refer to hash algorithm of a derived
handle (expand or extract handle) because it inherits and includes the algorithm tag
from its root base keys deep inside its recursive structure. Upon each xtr operation,
the security model ensures that the algorithm tags of the given handles are all the
same in order to make the algorithm tag of all base handles of any constructed handle
consistent. As a result, hash algorithm of any (base, extract, expand) handle ℎ is
well-defined and is denoted by alg(ℎ).

3.2.6 Resumption levels

Finally, we define handle resumption levels. Recall that PSKs generated with the
resumption master secret and the ticket nonce in a TLS session can be used for
authentication in a future session with the binder values and as a base key for derivation
of other keys in that session. Since handles comprise the information about the key
derivation steps, handles of resumption PSKs record the number of session resumptions
as part of their recursive structure. We refer to this number of resumptions as the level
of the handle ℎ and denote it by level(ℎ). For instance, handles of all keys derived
in the first TLS session 𝑠0 authenticated with an application PSK have level zero.
However, handles of the keys, including the resumption PSK, derived in the next
session 𝑠1 from the resumption master secret of session 𝑠0 have level one. Similarly,
handles of the keys derived in the new session 𝑠2 from the resumption master secret of
session 𝑠1 have level two, and so on. Generally, for ℓ ≥ 0, handles of the keys derived
in the session 𝑠ℓ from the resumption master secret of session 𝑠ℓ−1 (or application
PSK in session 𝑠0) have level ℓ. One can formally define the level of a handle ℎ with
the number of expand handles xpd⟨psk, · · · ⟩ in the body of ℎ recursively ℎ as follows:

78

level(ℎ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ ℎ = 0salt, 0ikm⟨𝑎𝑙𝑔⟩, dh⟨sort(𝑋,𝑌)⟩
0 ℎ = psk⟨𝑐𝑡𝑟, 𝑎𝑙𝑔⟩, noPSK⟨𝑎𝑙𝑔⟩
level(ℎ1) ℎ = xtr⟨𝑛, ℎ1, ℎ2⟩ ∧ 𝑛 ∈ {hs, as}
level(ℎ2) ℎ = xtr⟨𝑛, ℎ1, ℎ2⟩ ∧ 𝑛 = es
level(ℎ1) ℎ = xpd⟨𝑛, label, ℎ1, args⟩ ∧ 𝑛 ≠ psk
1 + level(ℎ1) ℎ = xpd⟨psk, resumption, ℎ1, 𝑡𝑛⟩

Therefore, the key name parenting construct a directed graph as illustrated in the
Figure 11 with a cycle connecting a resumption master secret (of the previous level) to
the resumption PSK (of the next level).

level

Figure 11: TLS 1.3 key names and parents (copied with permission from [BDLE+21])

In hindsight, handles comprise information about the key derivation steps, hash
algorithms, resumption levels, labels and transcripts. Together with the log of handle
to key mappings, the security game can compute all the keys in the key schedule.

3.2.7 Packages

In this section, we define SSP packages used in the real (Gks0) and ideal (Gks1(S))
security games. As mentioned in the beginning of Section 3.2, an adversary against
the games Gks0 and Gks1(S) shall instruct the games to (1) generate honest DH
shares/secrets and honest application PSKs and receive their handles, (2) set its own
dishonest DH shares/secrets and dishonest application PSKs, (3) derive internal and
output keys with xtr and xpd operations using the handles, and (4) retrieve the value
of output keys. The adversary is allowed to generate as many TLS sessions as it wants
and resume these session for at most 𝑑 many times (i.e. the maximum resumption
level of the key handles is 𝑑). The games Gks0 and Gks1(S) expose six types of oracles

79

for these four functionalities: DHGEN; DHEXP; SETpsk,0; XTR𝑛,ℓ for all 𝑛 ∈ 𝑁xtr and
ℓ ∈ [𝑑]; XPD𝑛,ℓ for all 𝑛 ∈ 𝑁xpd and ℓ ∈ [𝑑]; and GET𝑛,ℓ for all 𝑛 ∈ 𝑂∗ and ℓ ∈ [𝑑],
where [𝑑] := {0, 1, . . . , 𝑑} and 𝑂∗ is the set of output keys.

DH

Parameters

𝐺 : set of groups
ord : 𝐺 → N

State

𝐸 : table

DHGEN(grp)
assert grp ∈ 𝐺
𝑔 ← gen(grp)
𝑥 ←$ 𝑍ord(grp)

𝑋 ← 𝑔𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

DHEXP(𝑋,𝑌)
assert grp(𝑋) = grp(𝑌)
ℎ← dh⟨sort(𝑋,𝑌)⟩
hon𝑋 ← 𝐸 [𝑋] ≠ ⊥
hon𝑌 ← 𝐸 [𝑌] ≠ ⊥
assert hon𝑋 = 1
𝑥 ← 𝐸 [𝑋]; 𝑘 ← 𝑌 𝑥

hon← hon𝑋 ∧ hon𝑌
ℎ← SETdh(ℎ, hon, 𝑘)
return ℎ

Figure 12: Package DH

Oracles DHGEN and DHEXP are exposed by package
DH. These oracles allow the adversary to generate hon-
est/dishonest DH shares/secrets for all TLS sessions (initial
or resumed) it needs. Given a description of the group
grp with order ord(grp), oracle DHGEN(grp) allows the
adversary to generate honest DH shares 𝑔𝑥 where 𝑔 is
the generator of the group grp and 𝑥 is chosen uniformly
from the set 𝑍ord(grp) . Oracle DHEXP(𝑋,𝑌) allows the
adversary to raise any 𝑌 to the power of 𝑥 where 𝑋 = 𝑔𝑥

is generated honestly by DHGEN. The adversary, then,
receives the handle dh⟨sort(𝑋,𝑌)⟩ of the key 𝑔𝑥𝑦. Similar
to the keying package pattern introduced in Section 2.1,
oracle DHEXP stores the DH secret 𝑔𝑥𝑦 in the global (non-
leveled) key package NKeydh via its SETdh oracle. The key
package NKeydh stores the mapping of DH handles ℎ to
DH secrets 𝑘 for the use of other keyed packages. We will
later on see the pseudocode of package NKeydh. Notice that
the oracle DHEXP computes the honesty status hon of the
handle dh⟨sort(𝑋,𝑌)⟩ as hon𝑋 ∧ hon𝑌 and records it also
in the key package NKeydh. (The key package NKeydh stores
the honesty bit and the actual key value for each handle.)
Therefore, a DH secret 𝑔𝑥𝑦 would be honest if both of the
involved DH shares 𝑋 and 𝑌 are honestly generated by
DHGEN. See Figure 12 for the pseudocode of DH pack-
age. Clearly, DHGEN enables the adversary to generate
honest DH shares and DHEXP allows the adversary to
generate honest and dishonest DH secrets using honest and
dishonest DH shares, fulfilling the required DH-related
functionalities described before.

The pseudocode of package DH and other packages in
this section are adopted from [BDLE+21]; however, we
mark additions with blue and removals with red.

Oracles XTR𝑛,ℓ and XPD𝑛,ℓ are exposed by packages
Xtr𝑏

𝑛,ℓ
and Xpd𝑛,ℓ, respectively. These oracles allow the

adversary to derive internal or output key 𝑛 in a TLS session
of level ℓ using the xtr and xpd operations, achieving the
third functionality of the security games described before. Figures 13 and 14 show the
pseudocode of the packages.

Oracle XTR𝑛,ℓ (ℎ1, ℎ2) expects to receive handles (ℎ1, ℎ2) of level ℓ with names
(𝑛1, 𝑛2) as parents of the key name 𝑛. The oracle verifies its expectation and gets the
actual parent key values (𝑘1, 𝑘2) and honesty bits (hon1, hon2) of handles (ℎ1, ℎ2)
via the oracles GET𝑛1,ℓ and GET𝑛2,ℓ exposed by the leveled key packages Key𝑏

𝑛1,ℓ
and

80

Key𝑏
𝑛2,ℓ

. The key package Key𝑏
𝑛,ℓ

stores the mapping of handles of level ℓ with name 𝑛
to the corresponding keys. We will shortly see the pseudocode of the key package
Key𝑏

𝑛,ℓ
. The oracle XTR𝑛,ℓ (ℎ1, ℎ2) then derives the key 𝑘𝑛 = xtr(𝑘1, 𝑘2) and stores 𝑘𝑛

in the key package Key𝑏
𝑛,ℓ

via its SET𝑛,ℓ oracle. Notice how the package Xtr𝑏
𝑛,ℓ

acts as
both a keying by extracting the parent key values and a keyed package by storing the
new key value. Finally, the oracle returns the handle ℎ = xtr⟨𝑛, ℎ1, ℎ2⟩ to the key 𝑘𝑛.

Xtr𝑏
𝑛,ℓ

Parameters

𝑛 : name
ℓ : level
𝑏 : bit
PrntN : 𝑁 → (𝑁⊥ × 𝑁⊥)

State

no state

XTR𝑛,ℓ (ℎ1, ℎ2)
𝑛1, 𝑛2 ← PrntN(𝑛)
if alg(ℎ1) ≠ ⊥ ∧ alg(ℎ2) ≠ ⊥ :

assert alg(ℎ1) = alg(ℎ2)
ℎ← xtr⟨𝑛, ℎ1, ℎ2⟩
(𝑘1, hon1) ← GET𝑛1,ℓ (ℎ1)
(𝑘2, hon2) ← GET𝑛2,ℓ (ℎ2)
𝑘 ← xtr(𝑘1, 𝑘2)
hon← hon1 ∨ hon2

if 𝑏 ∧ hon2 :

𝑘★←$ {0, 1}len(𝑘)

𝑘 ← tagalg(𝑘) (𝑘★)
ℎ← SET𝑛,ℓ (ℎ, hon, 𝑘)
return ℎ

Figure 13: Package Xtr𝑏
𝑛,ℓ

The oracle XTR𝑛,ℓ (ℎ1, ℎ2) computes the hon-
esty of the output handle ℎ as hon1∨hon1. There-
fore, if at least one of the input handles are honest,
the output handle will be honest. This reflects the
core feature of the key schedule security model
that output keys with computed from at least one
honest input keying materials should be honest.
We will see how the SET(ℎ, hon, 𝑘∗) oracle of
the idealized key packages Key1

𝑛,ℓ
(in the ideal

game) discards the given key 𝑘∗ and stores a
mapping from ℎ to a randomly chosen key 𝑘 if
hon = 1, achieving pseudorandomness of honest
handles. Notice that the oracle SET(ℎ, hon, 𝑘∗)
also records the honesty bit of the given handle ℎ.
Therefore, the key packages Key𝑏

𝑛,ℓ
store the actual

key value as well as the honest bit of handles in
level ℓ with name 𝑛.

The idealized package Xtr1 is also seen to
sample a uniform random key 𝑘∗ if the second
parent handle is honest. As hinted before, all
keys in the security model are tagged with a hash
algorithm. We denote the algorithm tag of a
key 𝑘 with alg(𝑘). BDEFKK show that keys
stored in a key package have the same algorithm
tag as the handles that map to the keys. There-
fore, alg(𝑘1) = alg(ℎ1) and alg(𝑘2) = alg(ℎ1).
Since alg(ℎ1) = alg(ℎ2), alg(𝑘1) = alg(𝑘2). Key
derivation function 𝑘 = xtr(𝑘1, 𝑘2) tags 𝑘 with
the well-defined tag alg(𝑘) = alg(𝑘1) = alg(𝑘2)
inherited from its parents (See the pseudocode
of xtr in Figure 20 using the pseudocode of
xtr-alg(𝑘1, 𝑘2) in Figure 10). As a result, the raw
random key 𝑘∗ is tagged with the same tag alg(𝑘)
to obtain the tagged key tagalg(𝑘) (𝑘★). Looking
forward, in the ideal security game, the package Xtr𝑏

𝑛,ℓ
is only idealized for 𝑛 = hs

where DH secret 𝑘dh is mixed with early salt 𝑘esalt to derive handshake salt 𝑘hs. The
packages Xtr𝑏es,ℓ and Xtr𝑏as,ℓ are not idealized in the ideal game. In order to idealize
the package Xtr𝑏hs,ℓ (i.e. switch from Xtr0

hs,ℓ to Xtr1
hs,ℓ), BDEFKK reduce to the Salted

81

Oracle Diffie-Hellman (SODH) assumption in a game hop.

Xpd𝑛,ℓ

Parameters

𝑛 : name
ℓ : level
PrntN : 𝑁 → (𝑁⊥ × 𝑁⊥)
Labels : 𝑁 × {ext, res,⊥} → {0, 1}96

State

no state

XPD𝑛,ℓ (ℎ1, 𝑟, args)
𝑛1, _← PrntN(𝑛)
label← Labels(𝑛, 𝑟)
ℎ← xpd⟨𝑛, label, ℎ1, args⟩
(𝑘1, hon) ← GET𝑛1,ℓ (ℎ1)
if 𝑛 = psk :
ℓ ← ℓ + 1
𝑘 ← xpd(𝑘1, (label, args))

else
𝑑 ← HASH(args)
𝑘 ← xpd(𝑘1, (label, 𝑑))

ℎ← SET𝑛,ℓ (ℎ, hon, 𝑘)
return ℎ

Figure 14: Package Xpd𝑛,ℓ

Oracle XPD𝑛,ℓ (ℎ1, 𝑟, args) is similar to
XTR𝑛,ℓ (ℎ1, ℎ2) but performs xpd key derivations.
The oracle expects to receive a handle ℎ1 of level
ℓ with name 𝑛1 as parent of key name 𝑛. Similar to
the oracle XTR𝑛,ℓ, it verifies this expectation and
gets the actual parent key value 𝑘1 and honesty
bit hon of handle ℎ1 via the oracle GET𝑛1,ℓ of the
key package Key𝑏

𝑛1,ℓ
.

Additionally, it receives a PSK resumption
indicator 𝑟 ∈ {ext, res,⊥} as well as other argu-
ments args (transcript or ticket nonce), necessary
for key derivations. Using the resumption indi-
cator 𝑟 and key name 𝑛, the oracle XPD relies on
the function Labels(𝑛, 𝑟) to compute the correct
label for key derivations. For 𝑛 ≠ bind, the oracle
expects 𝑟 = ⊥, while for 𝑛 = bind, the oracle
expects 𝑟 = ext if level(ℎ1) = 0 and 𝑟 = res is
level(ℎ1) > 0. For 𝑛 ≠ psk, args should be the
transcript and XPD𝑛,ℓ computes the hash digest
of args using the HASH oracle of Hash0 package.
(See package Hash0 = Gacrhash,0 in Figure 19) For
𝑛 = psk, args should be the ticket nonce 𝑡𝑛 and is
not hashed. However, the new computed resump-
tion PSK belongs to the next level. Therefore, ℓ
is incremented by one.

Similar to XTR𝑛,ℓ, key derivation function
𝑘 = xpd(𝑘1, (label, 𝑑)) tags 𝑘 with algorithm
alg(𝑘1) inherited from 𝑘1 (See the pseudocode
of xpd(𝑘1, (label, 𝑑)) in Figure 20 using the
pseudocode of xpd-alg(𝑘1, (label, 𝑑)) in Figure
10). Therefore, alg(𝑘) = alg(𝑘1). Since BDE-
FKK show alg(ℎ1) = alg(𝑘1), we conclude
alg(ℎ) = alg(𝑘) from the handle structure. Finally, XPD𝑛,ℓ returns the handle
ℎ = xpd⟨𝑛, label, ℎ1, args⟩ and stores the computed key 𝑘𝑛 and the honesty bit hon
inherited from its parent in the key package Key𝑏

𝑛,ℓ
under the handle ℎ.

In order to verify the expectations of the oracle XPD𝑛,ℓ (ℎ1, 𝑟, args) about the
resumption indicator 𝑟 and the transcript args, adversary’s queries to this oracle are
first proxied through package Check.

The package Check exposes oracles XPD𝑛,ℓ (ℎ1, 𝑟, args) for all 𝑛 ∈ 𝑁xpd and ℓ ∈ [𝑑]
with the pseudocode in Figure 15. The oracle XPD𝑛,ℓ (ℎ1, 𝑟, args) of package Check

checks the value of 𝑟 and transcript content. For 𝑛 = bind, resumption indicator
should correspond with the level of handle. Namely, for the initial TLS session
(level zero), the binder key 𝑘bind is derived with label ext binder to indicate usage
of an application PSK while for the resumed TLS sessions (non-zero levels), label

82

res binder to indicate usage of a resumption PSK. The other checks correspond
to transcript content checks. Let 𝑂∗ be the set of all output keys (i.e. 𝑂∗ =

{cet, eem, cht, sht, cat, sat, eam, rm}). For all output keys 𝑛 ∈ 𝑂∗, the oracle ensures
the binder value in the transcript (in args) is the same as key 𝑘binder stored in the
key package Key𝑏binder,ℓ under the binder handle ℎbinder = xpd⟨binder, [], ℎbind, 𝑡bind⟩,
where ℎbind = xpd⟨bind, Labels(bind, 𝑟), ℎes, []⟩, 𝑡bind is the Client Hello message
from args, ℎes is obtained from the recursive structure of ℎ1 and 𝑟 ∈ {ext, res}
depends on the level of ℎ1. For the output keys 𝑛 ∈ 𝑂∗ \ {cet, eem} where the transcript
includes the DH shares (𝑋,𝑌) of the client and server, XPD𝑛,ℓ (ℎ1, 𝑟, args) additionally
checks the DH handle ℎdh obtained from the recursive structure of ℎ1 is exactly
dh⟨sort(𝑋,𝑌)⟩.

Check

XPD𝑛,ℓ (ℎ1, 𝑟, 𝑎𝑟𝑔𝑠)
if 𝑛 = 𝑏𝑖𝑛𝑑 :

if 𝑟 = 0 : assert level(ℎ1) = 0
if 𝑟 = 1 : assert level(ℎ1) > 0

elseif 𝑛 ∈ {cet, eem, binder} :
assert 𝑟 = ⊥
binder← BinderArgs(args)
ℎbinder ← BinderHand(ℎ1, args)
(𝑘, _) ← GETbinder,ℓ (ℎbinder)
assert binder = 𝑘

elseif 𝑛 ∈ {cht, sht, cat, sat, eam} :
assert 𝑟 = ⊥
𝑋,𝑌 ← DhArgs(args)
ℎdh ← DhHand(ℎ1)
assert ℎdh = dh⟨sort(𝑋,𝑌)⟩
binder← BinderArgs(args)
ℎbinder ← BinderHand(ℎ1, args)
(𝑘, _) ← GETbinder,ℓ (ℎbinder)
assert binder = 𝑘

ℎ← XPD𝑛,ℓ (ℎ1, 𝑟, args)
return ℎ

Figure 15: Package Check

The package Check shows to what extent the
key schedule depends on the transcript. Since the
choice of arguments (transcript) for xpd opera-
tions is under adversarial control, these checks
ensure the adversary uses a relevant transcript,
those that are generated by the actual runs of the
protocol between honest and dishonest parties and
adheres to the TLS 1.3 standard key schedule
specifications for the format and content of the
transcript used by the key derivation functions.
As we will see in the security analysis, these key
schedule specifications are crucial for the secu-
rity reduction. Concretely, the checks align with
our previous discussion of importance of mix-
ing transcript digests in the key schedule. They
prevent the natural Diffie-Hellman key collision
and unknown key share (UKS) attack due to ex-
ternal/resumption PSK confusion. Both of these
collisions prevent output key uniqueness.

Compared to pseudocode of package Check in
[BDLE+21], we have added an additional check
for resumption indicator 𝑟 to align with our def-
inition of Labels function. BDEFKK have not
clearly defined the Labels function for key names
𝑛 ≠ bind.

Moreover, BDEFKK describe their security
model and analysis for all TLS-like key schedule
syntaxes, a generalization of TLS 1.3 key schedule
syntax and key parenting graph. In their code of
package Check𝑛,ℓ, they use 𝑛 ∈ 𝑆 ∩ early instead
of 𝑛 ∈ {cet, eem, binder} and 𝑛 ∈ 𝑆 instead of
𝑛 ∈ {cht, sht, cat, sat, eam}, where 𝑆 is the set of separation points. The separation
points of a TLS-like key schedule syntax roughly correspond to the xpd operations
where the hash digest of the transcript of the protocol is mixed with other keying

83

material as an input to xpd. Concretely, for TLS 1.3, all the output keys 𝑂∗ are the
separation points (i.e. 𝑆 = 𝑂∗) and {cet, eem, binder} are the early separation points.
In this thesis, we focus on the analysis of BDEFKK concretized for TLS 1.3 and leave
verification of the analysis for TLS-like key schedule syntaxes to a future work.

Key𝑏n,ℓ

State

𝐾𝑛,ℓ : table

SETn,ℓ (ℎ, ℎ𝑜𝑛, 𝑘★)
assert name(ℎ) = n
assert level(ℎ) = ℓ
assert alg(𝑘★) = alg(ℎ)
𝑘 ← untag(𝑘★)
assert len(ℎ) = |𝑘 |
if Qn(ℎ) ≠ ⊥ :

return Qn(ℎ)
if 𝑏 :

if hon :

𝑘 ←$ {0, 1}len(ℎ)

ℎ′ ← UNQn(ℎ, ℎ𝑜𝑛, 𝑘)
if ℎ′ ≠ ℎ :

return ℎ′

𝐾n,ℓ [ℎ] ← (𝑘, hon)
return ℎ

GETn,ℓ (ℎ)
assert 𝐾n,ℓ [ℎ] ≠ ⊥
(𝑘∗, hon) ← 𝐾n,ℓ [ℎ]
𝑘 ← tagℎ (𝑘∗)
return (𝑘, hon)

Figure 16: Package
Key𝑏

𝑛,ℓ

Finally, oracles GET𝑛,ℓ for 𝑛 ∈ 𝑂∗ and SETpsk,0
are exposed by the packages Key𝑏

𝑛,ℓ
and Key𝑏psk,0, re-

spectively. Figure 16 show the code of Key𝑏
𝑛,ℓ

for all
𝑛 ∈ 𝑁 \ {dh, 0salt, 0ikm} and ℓ ∈ [𝑑].

The oracle SET𝑛,ℓ ensures the name and level of the
handle ℎ matches the name and level of the package. It
also ensures the algorithm tag of the handle is the same as
the key 𝑘∗ to be stored as well as the length of the raw key
14 is the same as the output length of the hash algorithm.
(Recall that len(ℎ) = len(alg(ℎ)).) SET𝑛,ℓ queries the
oracle Q𝑛 from the package Log

𝑃,map
𝑛 to determine whether

the key has been set before. As hinted before, observe that
the ideal key package Key1

𝑛,ℓ
(in the ideal game) discards

the given key 𝑘∗ and samples and stores a random key
when hon = 1. SET𝑛,ℓ queries the oracle UNQ𝑛 from
the package Log

𝑃,map
𝑛 to check for uniqueness of the key.

We will describe different uniqueness functionalities of
the Log

𝑃,map
𝑛 depending on its pattern 𝑃 and mapping map

parameters. Finally, SET𝑛,ℓ stores the untagged key and
its honesty bit in the table 𝐾𝑛,ℓ with the index of handle
ℎ. Notice that no key is stored in the table when UNQ𝑛

returns a different handle ℎ′ ≠ ℎ (if a uniqueness mapping
occurs).

The oracle GET𝑛,ℓ ensures there is a key in the table
with handle ℎ and implicitly matches the name and level
of the handle with the package parameters because only
such matching handles and keys are stored in the table
by SET𝑛,ℓ. The oracle GET𝑛,ℓ then tags the key in the
table with the algorithm of the handle and returns both the
tagged key and the honesty status of the handle.

Similar to BDEFKK, we initialize the table 𝐾psk,0 with
zero keys 0len(𝑎𝑙𝑔) for dishonest handles noPSK⟨𝑎𝑙𝑔⟩.
Namely, for 𝑎𝑙𝑔 ∈ H , we set 𝐾psk,0 [noPSK⟨𝑎𝑙𝑔⟩] =

(0len(𝑎𝑙𝑔) , 0). This initialization mandates another initial-
ization in the package Log

𝑃,𝑚𝑎𝑝

psk that we will discuss later
on.

Before moving to the package Log
𝑃,map
𝑛 , we introduce

14Notice that the length of the raw key is independent of the algorithm tag of the key. Essentially,
tagged keys 𝑘 can be viewed as tuples (𝑘∗, alg) where 𝑘∗ is the raw bitstring and alg is the hash
algorithm tag.

84

the non-leveled key package NKey𝑛 for 𝑛 ∈ {dh, 0salt, 0ikm}. Package NKey𝑛 exposes
getter and setter oracles GETn,ℓ∈[𝑑] and SETn for the DH keys and zero salts. The
setter oracle SETdh is called by the oracle DHEXP while the getter oracle GETn,ℓ∈[𝑑]
is called by the oracle XTR.

Figure 17 shows the code of this package. Unlike Key𝑏
𝑛,ℓ

, for each key name
𝑛 ∈ {dh, 0salt, 0ikm}, there is only one global key package NKey𝑛. This allows the
adversary to use Diffie-Hellman secrets and zero salts across different levels. Recall
that DH, 0salt and 0ikm handles do not have levels. The SET𝑛 oracle (only exposed
by NKeydh) is also lightweight and performs fewer checks because DH secrets do not
have algorithm tags. The oracle SETdh calls oracles Qdh and UNQdh from the package
Log

𝑃,𝑚𝑎𝑝

dh . For ease of notation in Xtr and Xpd packages, NKey𝑛 exposes oracles GET𝑛,ℓ
for all ℓ ∈ [𝑑] although the code for all oracles are the same and level ℓ is ignored.
Keys are tagged with ⊥ as only DH secrets reach to this point and DH handles do not
have algorithm tags. Notice that the package does not have idealization parameter
and the idealization of DH secrets occur indirectly as part of the Salted Oracle Diffie
Hellman (SODH) assumption. Finally, BDEFKK use state initialization for the zero
keys while we take care of initial state without storing zero values in the table.
Moreover, TLS 1.3 standard specifies that “implementations MUST check whether
the computed Diffie-Hellman shared secret is the all-zero value and abort if so, . . . ”
(Section 7.4.2 of [Res18]). This property is reflected with the blue line throw abort
in the code of package NKey. We found this missing check from the security modeling
of BDEFKK during the verification discussed in Section 4. However, the standard
only specifies this condition for elliptic curve Diffie-Hellman calculations but not
for finite field DH computations. Hence, The alternative solution will be an agile
NKeydh package, which similar to the Keypsk,0 package initializes the key table as
𝐾dh [noDH⟨𝑎𝑙𝑔⟩] = (0len(𝑎𝑙𝑔) , 0) with all-zero keys for dishonest handles noDH⟨𝑎𝑙𝑔⟩.
This initialization again mandates another initialization in the package Log

𝑃,𝑚𝑎𝑝

dh that
we will discuss later on. Notice that in the alternative solution, agile NKeydh package
disallows setting zero DH secrets for only elliptic curve groups. Since the information
about the group is included in the transcript as part of the cryptographic negotiation
messages, the Check package has to match the group tag of DH handles with transcript.
One may also not bother and allow setting zero keys for all groups. In any case, the
Check package has to match the transcript with the handle used for key derivations
(i.e. if no DH shares are used in the transcript, noDH⟨𝑎𝑙𝑔⟩ handle should be used and
if DH shares (𝑋,𝑌) are used, the group tag and the shares should match the shares in
the DH handle dh⟨sort(𝑋,𝑌)⟩). These checks are crucial for the security analysis to
prevent collision attacks discussed in Section 3.1.1.

We now look into the code of package Log
𝑃,map
𝑛 . Figure 18 shows the pseudocode

of the package. Red lines are removed from the original formulation of BDEFKK and
blue lines are added. The new Notice that only one package exists for each key name 𝑛
(i.e. the same package is called by all leveled packages Key𝑏

𝑛,ℓ
for all levels ℓ). As a

result, uniqueness checks for a key name 𝑛 happen across all levels. To answer the
uniqueness queries, the package has one table Log𝑛 for its state that stores triples of
the form (ℎ, hon, 𝑘) where ℎ is a handle, hon is the honesty bit and 𝑘 is an untagged

85

Log
𝑃,map
n

Parameters

𝑛 : name
𝑃 : pattern
𝑚𝑎𝑝 : mapping

State

Log𝑛 : Log table
J𝑛 : Key flag table

Qn(ℎ)
if Log𝑛 [ℎ] = ⊥ then

return ⊥
else (ℎ′, _, _) ← Log𝑛 [ℎ]

return ℎ′

UNQn(ℎ, ℎ𝑜𝑛, 𝑘)
if
(︂
∃ ℎ′ : Logn [ℎ′] = (ℎ′, hon′, 𝑘)

∧ level(ℎ) = 𝑟 ∧ level(ℎ′) = 𝑟 ′

∧ map(𝑟, hon, 𝑟 ′, hon′, J𝑛 [𝑘])
)︂

:

Logn [ℎ] ← (ℎ′, hon, 𝑘)
Jn [𝑘] ← 1
return ℎ′

if
(︂
∃ ℎ★ : Logn [ℎ★] = (ℎ′′, hon′, 𝑘)

∧ level(ℎ) = 𝑟 ∧ level(ℎ★) = 𝑟 ′ :

∧ 𝑃𝑐𝑜𝑛𝑑 (𝑟, hon, 𝑟 ′, hon′)
)︂

:

𝑃𝑐𝑚𝑑 (𝑟, hon, 𝑟 ′, hon′)
if 𝑃 = 𝑅 ∧ ∃ ℎ★ : Logn [ℎ★] = (ℎ′′, hon′, 𝑘) :

throw win
Logn [ℎ] ← (ℎ, ℎ𝑜𝑛, 𝑘)
return ℎ

𝑚𝑎𝑝 the condition map(𝑟, hon, 𝑟′, hon′, Jn [𝑘]) is
0 0
1 hon = hon′ = 0 ∧

∧ 𝑟 ≠ 𝑟′ ∧ 0 ∈ {𝑟, 𝑟′} ∧ Jn [𝑘] ≠ 1
∞ hon = hon′ = 0

𝑃 the condition 𝑃𝑐𝑜𝑛𝑑 (𝑟, hon, 𝑟′, hon′) is the command 𝑃𝑐𝑚𝑑 (𝑟, hon, 𝑟′, hon′) is
𝑍 ∅ ∅
𝐴 hon = hon′ = 0 ∧ 𝑟 = 𝑟′ = 0 throw abort
𝐷 hon = hon′ = 0 throw abort
𝑅 hon = hon′ = 0 throw abort
𝐹 ∅ throw abort

Figure 18: Package Log
𝑃,map
𝑛

86

raw key.

Nkeyn

State

𝐾𝑛 : table

SETn(ℎ, ℎ𝑜𝑛, 𝑘)
assert name(ℎ) = n

if 𝑛 = dh ∧ 𝑘 = 0len(𝑘) :
throw abort

if Qn(ℎ) ≠ ⊥ then
return Qn(ℎ)

ℎ′ ← UNQn(ℎ, ℎ𝑜𝑛, 𝑘)
if ℎ′ ≠ ℎ then

return ℎ′

𝐾n [ℎ] ← (𝑘, hon)
return ℎ

GETn,ℓ∈[𝑑] (ℎ)
if 𝑛 = 0salt :

assert ℎ = 0salt

return (tag⊥(0), 0)
if 𝑛 = 0ikm :

assert ℎ = 0ikm⟨alg⟩
return (tagalg(0len(alg)), 0)

if 𝑛 = dh ∧ ℎ = noDH⟨alg⟩ :

return (tagalg(0len(alg)), 0)
assert 𝐾n [ℎ] ≠ ⊥
(𝑘∗, hon) ← 𝐾n [ℎ]
𝑘 ← tagℎ (𝑘∗)
return (𝑘, hon)

Figure 17: Package
NKey𝑛

Upon a query to Q𝑛 (ℎ), the oracle looks up the table
Log𝑛 and returns the handle ℎ′ if Log𝑛 [ℎ] = (ℎ′, _, _)
(Read ℎ is mapped to handle ℎ′).

Upon a query to UNQ𝑛 (ℎ, hon, 𝑘), the oracle first
checks the mapping condition by searching the table for
a handle ℎ′ such that (1) there exists an entry in the
table with index ℎ′ (Log𝑛 [ℎ′] ≠ ⊥), (2) ℎ′ maps to it-
self (Log𝑛 [ℎ′] = (ℎ′, hon′, _)), (3) the entry contains
the same key 𝑘 (Log𝑛 [ℎ′] = (_, hon′, 𝑘), also read ℎ′

maps to the same key 𝑘), and (4) the mapping condition
𝑚𝑎𝑝(level(ℎ), hon, level(ℎ′), hon′, 𝐽𝑛 [𝑘]) holds. If such
an entry exists, a new Log entry (ℎ′, hon, 𝑘) is created
with handle ℎ as index (Read ℎ is mapped to ℎ′) and
the flag 𝐽𝑛 [𝑘] is set to 1. The flag is used by mapping
condition 𝑚𝑎𝑝 = 1 which ensures the mapping happen
only once for each key 𝑘 . The found handle ℎ′ is finally
returned from the oracle. This uniqueness functionality
helps to detect key collisions and return the handle ℎ′ of
an already existing key to the SET𝑛,ℓ (ℎ, hon, 𝑘) oracle of
the key package. Recall that the key package returns the
handle ℎ′ returned by UNQ𝑛 (ℎ, hon, 𝑘) if ℎ ≠ ℎ′. Observe
that this is always the case when a mapping occurs as
the handle ℎ does not exist in the table when the oracle
SET𝑛,ℓ (ℎ, hon, 𝑘) does not return what Q𝑛 (ℎ) returns. If
the mapping condition is 0, no table entry can satisfy the
lookup and no mapping occurs. For ease of notation, we
also remove the 𝑚𝑎𝑝 parameter when 𝑚𝑎𝑝 = 0. Notice
that the existential quantifier can be seen as the epsilon
operator of Hilbert epsilon calculus [AZ24].

If mapping is not triggered, the oracle UNQ𝑛 (ℎ, hon, 𝑘)
checks the pattern condition by searching the table for a
handle ℎ∗ such that (1) there exists an entry in the table
with index ℎ∗ , (2) ℎ∗ maps to the same key 𝑘 , and (3)
the pattern condition 𝑃𝑐𝑜𝑛𝑑 (level(ℎ), hon, level(ℎ′), hon′)
holds. If such an entry exists, the pattern command
𝑃𝑐𝑚𝑑 (level(ℎ), hon, level(ℎ′), hon′) executes. Addition-
ally, for the pattern 𝑃 = 𝑅, if there exists an entry that
maps to the key 𝑘 but not one where the pattern condition
𝑃𝑐𝑜𝑛𝑑 (level(ℎ), hon, level(ℎ′), hon′) holds, then we abort
with special symbol win. If the pattern condition is 𝑍 , no
table entry can satisfy the search condition and the pattern
command is not executed.

Finally, if neither a mapping or pattern is triggered, a new entry (ℎ, hon, 𝑘) in the
table Log𝑛 is created under the index ℎ (i.e. ℎ is mapped to itself with key 𝑘). Compared

87

to [BDLE+21], we have modified the code of this package to avoid notational mistakes
and clarify the correct semantics for security analysis as well the as the verification.

We will use the following parameter combinations for the Log package in the
security games and the security analysis: (𝑂∗ is the set of output keys)

Log𝑍dh, Log
𝑍,∞
dh , Log𝐴psk, Log

𝐴,1
psk , Log

𝐷,1
psk ,

Log𝑍𝑛≠dh,psk, Log
𝐷
𝑛≠dh,psk,𝑂∗ , Log

𝐹
O∗ , Log

𝑅
esalt

Complementing our discussion on initialization of key table 𝐾psk,0 in package
Keypsk,0, we mentioned that an initialization is required in the package Log

𝑃,𝑚𝑎𝑝

psk .
We initialize table Logpsk as follows: for 𝑎𝑙𝑔 ∈ H , we set Logpsk [noPSK⟨𝑎𝑙𝑔⟩] =
(noPSK⟨𝑎𝑙𝑔⟩, 0, 0len(𝑎𝑙𝑔)). In the alternative solution to address the zero values for
DH secrets, initialization of the table 𝐾dh in package NKeydh is necessary. Similarly,
we initialize table Logdh in package Log

𝑃,𝑚𝑎𝑝

dh : for 𝑎𝑙𝑔 ∈ H , Logdh [noDH⟨𝑎𝑙𝑔⟩] =
(noDH⟨𝑎𝑙𝑔⟩, 0, 0len(𝑎𝑙𝑔)).

Gacr𝑏

Parameters

𝑏 : bit

State

𝐻 : table

HASH(𝑡)
assert alg(𝑡) ∈ H
if 𝐻 [𝑡] ≠ ⊥ :

return 𝐻 [𝑡]
𝑑 ← untag(f(𝑡))
if 𝑏 ∧ 𝑑 ∈ range(𝐻) :

throw abort
𝐻 [𝑡] ← 𝑑

return 𝑑

Figure 19: Package
Gacrf,𝑏

Observe that mapping conditions are only used for
DH handles and PSK handles. Therefore, the Log table
initialization are necessary to allow mapping conditions
𝑚𝑎𝑝 = ∞ for DH handles and𝑚𝑎𝑝 = 1 for PSK handles to
include noDH and noPSK handles. We will see how these
initializations are taken into account in the verification.

Before defining the security games, we introduce the
package Hash𝑏 and pseudocode of functions xtr(𝑘1, 𝑘2),
xpd(𝑘1, (label, 𝑑)), and hash(𝑡). Package Hash𝑏 is de-
fined to be the package Gacrhash,𝑏 where the function
f is replaced with hash. Figure 19 shows the package
Gacrf,𝑏 and Figure 20 shows the pseudocode of xtr(𝑘1, 𝑘2),
xpd(𝑘1, (label, 𝑑)), and hash(𝑡), relying on functions
xpd-alg(𝑘1, label, 𝑑) and hmacalg(𝑘1, 𝑘2) from the Figure
10. Notice the transcript 𝑡 passed to the oracle HASH(𝑡)
is tagged with a hash algorithm (under adversarial control)
and the corresponding algorithm hash-alg(𝑡∗) is used.
Therefore, the package is said to be agile as it handles
several hash functions at the same time. BDEFKK use
the pair of real (Gacrf,0) and ideal (Gacrf,1) games to define
agile collision resistance security notions for functions
f ∈ {xpd, xtr, hash}. See Lemma A.2 from [BDLE+21]
where BDEFKK reduce agile collision resistance of these
three functions to standard (non-agile) collision resistance
assumptions for them.

3.2.8 Security games

Having discussed all the necessary packages, we can formally define the real and ideal
security games Gks0 and Gks1(S). Define 𝐼∗ := 𝑁 \ (𝑂∗ ∪ {psk, dh}) to be the set of

88

xtr(𝑘1, 𝑘2)
if alg(𝑘1) = ⊥ :

alg← alg(𝑘2)
𝑘2 ← untag(𝑘2)

else alg← alg(𝑘1)
𝑘1 ← untag(𝑘1)

𝑘 ← hmacalg(𝑘1, 𝑘2)
return tagalg(𝑘)

xpd(𝑘1, (label, 𝑑))
alg← alg(𝑘1)
𝑘1 ← untag(𝑘1)
𝑘 ← xpd-alg(𝑘1, label, 𝑑)
return tagalg(𝑘)

hash(𝑡)
𝑡∗ ← untag(𝑡)
alg← alg(𝑡)
𝑑∗ ← hash-alg(𝑡∗)
𝑑 ← tagalg(𝑑∗)
return 𝑑

Figure 20: Pseudocode of xtr(𝑘1, 𝑘2), xpd(𝑘1, (label, 𝑑)), and hash(𝑡)

89

all internal keys. Let Π𝑖∈𝐼𝑀𝑖 denote the parallel composition of packages 𝑀𝑖 for all
indices 𝑖 ∈ 𝐼 and index set 𝐼. For any package S with the following input and output
interface, we define

Gks0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

DH

IDSETpsk,0

Π𝑛∈𝑁xtr,ℓ∈[𝑑]Xtr
0
𝑛,ℓ

Check ◦
Π𝑛∈𝑁xpd,ℓ∈[𝑑]Xpd𝑛,ℓ

Πℓ∈[𝑑]IDGETbinder,ℓ

Π𝑛∈𝑂∗,ℓ∈[𝑑]IDGET𝑛,ℓ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
◦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

NKeydh ◦ Log𝑍dh(︁
Key1

psk,0 |Πℓ∈{1,...,𝑑+1}Key
0
psk,ℓ

)︁
◦ Log𝐴psk

Hash0

NKey0
0salt

NKey0
0ikm

Π𝑛∈𝐼∗
(︁
(Πℓ∈[𝑑]Key0

𝑛,ℓ
) ◦ Log𝑍𝑛

)︁
Π𝑛∈𝑂∗

(︁
(Πℓ∈[𝑑]Key0

𝑛,ℓ
) ◦ Log𝑍𝑛

)︁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Gks1(S) :=

S
Π𝑛∈𝑂∗,ℓ∈[𝑑]IDGET𝑛,ℓ

◦ Π𝑛∈𝑂∗
(︁
(Πℓ∈[𝑑]Key1

𝑛,ℓ) ◦ Log
𝐹
𝑛

)︁
.

The following tables summarize the input and output interfaces of packages used
in the games:

Package Input Interface
DH SETdh

Check XPD𝑛,ℓ for 𝑛 ∈ 𝑁xpd, ℓ ∈ [𝑑]
Key𝑏

𝑛,ℓ
for 𝑛 ∈ 𝑁 \ {dh, 0salt, 0ikm}, ℓ ∈ [𝑑] Q𝑛,UNQ𝑛

Log
𝑃,𝑚𝑎𝑝
𝑛 for 𝑛 ∈ 𝑁 \ {0salt, 0ikm} ∅

NKeydh Qdh,UNQdh
NKey𝑛 for 𝑛 ∈ {0salt, 0ikm} ∅
Xtr𝑏

𝑛,ℓ
for 𝑛 ∈ 𝑁xtr, ℓ ∈ [𝑑] GET𝑛1,ℓ,GET𝑛2,ℓ,SET𝑛,ℓ where (𝑛1, 𝑛2) = PrntN(𝑛)

Xpd𝑛,ℓ for 𝑛 ∈ 𝑁xpd \ {psk}, ℓ ∈ [𝑑] GET𝑛1,ℓ,SET𝑛,ℓ where (𝑛1, _) = PrntN(𝑛)
Xpdpsk,ℓ for ℓ ∈ [𝑑] GET𝑛1,ℓ,SET𝑛,ℓ+1 where (𝑛1, _) = PrntN(𝑛)

S GETbinder,ℓ,SET𝑛,ℓ for all 𝑛 ∈ 𝑂∗, ℓ ∈ [𝑑]

Package Output Interface
DH DHEXP,DHGEN

Check XPD𝑛,ℓ for 𝑛 ∈ 𝑁xpd, ℓ ∈ [𝑑]
Key𝑏

𝑛,ℓ
for 𝑛 ∈ 𝑁 \ {dh, 0salt, 0ikm}, ℓ ∈ [𝑑] SET𝑛,ℓ,GET𝑛,ℓ

Log
𝑃,𝑚𝑎𝑝
𝑛 for 𝑛 ∈ 𝑁 \ {0salt, 0ikm} Q𝑛,UNQ𝑛

NKeydh SETdh,GETdh,ℓ for all ℓ ∈ [𝑑]
NKey𝑛 for 𝑛 ∈ {0salt, 0ikm} GET𝑛,ℓ for all ℓ ∈ [𝑑]
Xtr𝑏

𝑛,ℓ
for 𝑛 ∈ 𝑁xtr, ℓ ∈ [𝑑] XTR𝑛,ℓ

Xpd𝑛,ℓ for 𝑛 ∈ 𝑁xpd \ {psk}, ℓ ∈ [𝑑] XPD𝑛,ℓ

Xpdpsk,ℓ for ℓ ∈ [𝑑] XPD𝑛,ℓ

S DHEXP,DHGEN,XTR𝑁xtr,[𝑑] ,XPD𝑁xpd,[𝑑] ,SETpsk,0

Figure 21 shows a compact visualization of the games; the oracles exposed to the
adversary are marked on the arrows at the left of the diagrams. We want to emphasize

90

DHEXP

DHGEN DH Nkeydh Logdh

SETdh

SETpsk,0

GET0salt,0..d

GET0ikm,0..d

Xtres/as,0..d

Xtrhs,0..d

XpdXPN, 0..d

0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d

SETpsk, 1..d

0

Z

Keypsk, 0

Keypsk, 1..d

1
0 Logpsk

0

A

HASH Hash0

GETO*,0..d

GETbinder, 0..d

Check

XTRes/as/hs,0..d

XPDXPN, 0..d

XPDXPN, 0..d

KeyI*, 0..d

0 LogI*

Z

KeyO*, 0..d

0 LogO*

Z
SETO*,0..d

SETI*,0..d

GETI*,0..d

Qdh

UNQdh

Qpsk

UNQpsk

QI*

UNQI*

QO*

UNQO*

Gks0

(a) Real game Gks0

SETO*, 0..d

GETbinder, 0..d

KeyO*, 0..d
1 UNQO* LogO*

SETpsk,0

DHGEN

DHEXP

XTRes/hs/as,0..d

XPDXPN,0..d

GETO*,0..d

F

Gks1()

(b) Ideal game Gks1(S)

Figure 21: Key schedule security games for 𝑑 levels with output keys 𝑂∗, internal
keys 𝐼∗ := 𝑁 \ (𝑂∗ ∪ {psk, dh}), 𝑋𝑃𝑁 := 𝑁xpd, 0Key0salt := NKey0salt and 0Key0ikm :=
NKey0ikm (copied with permission from [BDLE+21])

that an extended visualization look like a long ladder with zigzag steps. Keying and
keyed packages Xtr and Xpd lie on the left rail while the key and log packages Key,
NKey, and Log lie on the right rail such that any keying package SETs a key in a key
package Key from which another keyed package GETs a key. Package Keypsk,0 lies on
the top step and the package Keyes,0 sits on the step below it and all other packages
exist sit them in the order of computation in the key schedule. As a result, the number
of steps of the ladder grows with the number of resumption levels 𝑑.

Notice that in the game Gks0, the only idealized key package is Key1
psk,0. The adver-

sary can generate honest application PSKs by calling the oracle SETpsk,0(ℎ, hon, 𝑘)
with hon = 1 and dishonest application PSKs by setting hon = 0. Recall the security
goals of the key schedule: honest output keys 𝑂∗ shall be pseudorandom and unique.
Using the handles, we translate these two properties as follows: (pseudorandom) for
any honest output key handle ℎ (i.e. name(ℎ) ∈ 𝑂∗), the key returned by the oracle
GETname(ℎ),level(ℎ) (ℎ) can not be distinguished from a uniformly random key and

91

(uniqueness) for any two distinct output key handles ℎ ≠ ℎ′ with the same name (i.e.
name(ℎ) = name(ℎ′) = 𝑛 ∈ 𝑂∗), the keys returned by the queries GET𝑛,level(ℎ) (ℎ)
and GET𝑛,level(ℎ′) (ℎ′) are different. Remember that a handle is honest if an honest
DH handle or an honest PSK handle is used at some point during its construction.
This was ensured by the oracle XTR that computed the honesty bit of a new handle by
taking a logical OR of the honesty bits of its parents and the oracle XPD that set the
honesty bit of a new handle the same as its parent.

These two handle-based definitions can now be easily implemented in the game
Gks1(S) as the ideal functionality Π𝑛∈𝑂∗

(︁
(Πℓ∈[𝑑]Key1

𝑛,ℓ
) ◦ Log𝐹𝑛

)︁
. The idealized output

key packages Key1
𝑛,ℓ

store random keys forhonest handles, achieving pseudorandomness.
The 𝐹 pattern of the package Log𝐹𝑛 ensures full uniqueness functionality such that
it aborts upon the first output key collision, achieving uniqueness. Notice that if
two TLS sessions use the same external/application PSK shared out-of-band, the
key schedule of their sessions might derive the same set of keys. Although this can
only happen if the sessions use the same set of nonces and DH secrets (and other
arguments) but recall that such arguments are under adversarial control in our model.
Therefore, the adversary can set the same dishonest application PSKs under two
different handles and derive distinct output key handles with the same keys. This
violates the uniqueness property. To prevent this trivial attack, we use the 𝐴 pattern
for the package Log𝐴psk in the game Gks0. The 𝐴 pattern implements application
PSK uniqueness functionality. Namely, the oracle UNQ does not allow any collision
between dishonest application PSKs chosen by the adversary. (Figure 18 defines
the pattern condition 𝑃𝑐𝑜𝑛𝑑 (𝑟, hon, 𝑟′, hon′) := hon = hon′ = 0 ∧ 𝑟 = 𝑟′ = 0 when
𝑃 = 𝐴.)

3.3 Overview of Key Schedule Security Analysis

BDDEFF construct a concrete and efficient simulator package S and in Theorem
C.1 of [BDLE+21] bound the advantage Adv(A, Gks0, Gks1(S)) of any adversary A,
which makes queries for at most 𝑑 resumption levels, by the advantage of adversaries
of the form A → R, where R is a PPT reduction, against the modular security
games for (dual) pseudorandomness and collision resistance assumption of xtr and xpd
functions, collision resistance assumption of hash function hash, and Salted Oracle
Diffie-Hellman (SODH) assumption.

These modular security games for the assumption are specific compositions of the
packages already illustrated in the previous section. In Appendix E of [BDLE+21],
BDEFKK bound the advantage of any adversary A against these modular security
games by the advantage of adversaries of the form A → R for PPT reductions R
against standard monolithic security games for the aforementioned assumptions. For
example, see the monolithic security games for SODH assumption in Section 5.
Therefore, they reduce the security of key schedule to standard assumptions in the
concrete security setting. (See Section 2.1 for the discussion on concrete security
model.)

We refer the reader to [BDLE+21] for the detailed security reduction of modular

92

GETesalt,0..d
Xtrhs,0..d

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,0..d

SEThs,0..d

GEThs,0..d

XTRhs,0..d

Logdh

Loghs

Z

D0

GETdh,0..d

Qesalt
UNQesalt

Keyesalt,0..d

SETesalt,0..d
Logesalt

R0

b

DHEXP
DHGEN

DH
SETdh

Figure 22: Games Gsodh𝑏 for 𝑏 ∈ {0, 1} (copied with permission from [BDLE+21])

to standard monolithic assumptions. However, we briefly sketch an overview of the
reduction of key schedule security to modular assumptions (i.e. proof of Theorem
C.1). Towards this end, we illustrate three modular assumptions to motivate for
the main lemmata of the proof. To allow the reader to compare an example of
modular assumption with a monolithic assumption, we begin with the modular SODH
assumption.

3.3.1 Modular SODH assumption

Figure 22 shows the definition of real (𝑏 = 0) and ideal (𝑏 = 1) modular SODH
security games Gsodh𝑏 as the compositions of packages illustrated in the previous
section. The modular SODH assumption states that the games Gsodh𝑏 for 𝑏 ∈ {0, 1}
are indistinguishable for any adversaryA against them. In Lemma E.1 of [BDLE+21],
BDEFKK reduce the modular SODH assumption to collision resistance of xtr and
the monolithic SODH assumption (introduced in Section 5). Notice that an adversary
against Gsodh𝑏 can set arbitrary early salts 𝑘esalt in the key package Key0

esalt,[𝑑] under
honest and dishonest handles since the key package is not idealized and a random
key is not sampled for the honest handles. Informally, the assumption states that
xtr(𝑘dh, 𝑘esalt) is pseudorandom for honest DH secret 𝑘dh and adversarially chosen
𝑘esalt (cf. Oracle Diffie-Hellman assumption [ABR01] explained in Section 5).

If the adversary is allowed to set the same early salt key 𝑘esalt under two distinct
handles ℎ ≠ ℎ′ in level ℓ and mix this key with an honest DH secret under the handle
ℎdh, Xtr1

hs,ℓ (in the ideal game) samples two distinct keys for ℎesalt and ℎ′esalt with
high probability and set them in the key packge Key0

hs,ℓ. The adversary can easily
distinguish the real and ideal games Gsodh𝑏 by first setting ℎhs = XTRhs,ℓ (ℎesalt, ℎdh)
calling ℎhs = XTRhs,ℓ (ℎesalt, ℎdh) and ℎ′hs = XTRhs,ℓ (ℎ′esalt, ℎdh) and comparing there
outputs of GEThs,ℓ (ℎhs) and GEThs,ℓ (ℎ′hs). They are the the same in the real game
Gsodh0 and distinct with high probability in the ideal game Gsodh1. To prevent this
trivial attack and similar to the choice of 𝐴 pattern for the package Log𝐴psk in Gks0, the
pattern 𝑅 is used for package Log𝑅esalt to abort whenever the adversary sets the same
early salt under two distinct handles. Recall that the pattern 𝑅 aborts with the symbol

93

𝑎𝑏𝑜𝑟𝑡 when two dishonest handles have a key collision (regardless of the levels of the
handles) and with the symbol 𝑤𝑖𝑛 when an honest handle has the same key as another
handle (again regardless of the levels). The reason for aborting with a different symbol
𝑤𝑖𝑛 when an honest handle has the same key as a dishonest handle is to reduce to
pseudorandomness of xpd operations deriving 𝑘esalt. Intuitively, honest handles map
to random keys sampled by an idealized key package. BDEFKK bound the probability
that such keys collide with adversarially chosen keys or keys derived from dishonest
base keys using the pseudorandomness assumptions for xpd function.

3.3.2 Core key schedule security: Hybrid argument

BDEFKK reduce to the modular SODH assumption as a game hop in their hybrid
argument and idealize the package Xtr𝑏hs,[𝑑] . Generally speaking, when proving
composition 𝑓 (𝑔(𝑘2, 𝑦), 𝑥) of pseudorandom functions 𝑓 (𝑘1, 𝑥) and 𝑔(𝑘2, 𝑦) is a
pseudorandom function, we first reduce to psuedorandomness assumption of 𝑔
and replace 𝑔(𝑘2, 𝑦) with a random key 𝑘1 and then reduce to psuedorandomness
assumption of 𝑓 and replace 𝑓 (𝑘1, 𝑥) with a random string 𝑟 . BDEFKK consider the
key schedule as a complex chain of psuedorandomness extractors and functions. They
use a similar approach by idealizing the xtr and xpd operations layer by layer (i.e.
one operation (key) in each resumption level and then one level at a time). However,
They idealize all early salt extractors at once with the reduction to modular SODH
assumption because of the global key package NKeydh and the lack of an idealziation
parameter for this package. 15 Nevertheless, they idealize all other key packages one
package at a time by reducing to the corresponding pseudorandomness assumption for
the xpd operation. 16 (They go down the ladder visualization of the game Gks0 one
step at a time.)

For instance, in a similar setting, for any ℓ ∈ [𝑑], Figure 23 shows the definition of
real (𝑏 = 0) and ideal (𝑏 = 1) security games Gxtr2𝑏hs,ℓ for modular pseudorandomness
assumption of 𝑘hs = xtr(𝑘esalt, 𝑘dh) operation. The assumption states that the games
Gxtr2𝑏hs,ℓ for 𝑏 ∈ {0, 1} are indistinguishable for any adversary A against them.
Informally, it states that 𝑘hs is psuedorandom if 𝑘𝑒𝑠𝑎𝑙𝑡 is chosen randomly. Notice
that honest early salt 𝑘esalt is chosen randomly by the key package Key1

esalt,ℓ and 𝑘dh
is directly chosen and set by the adversary (not necessarily a group element) with
arbitrary honesty status. Observe that the key 𝑘hs is stored in the key package Key𝑏hs,ℓ
which stores a random key for honest handle in the ideal game 𝑏 = 1 and the actual
key in the real game 𝑏 = 0. Other modular pseudorandomness assumption games
have a similar structure where the input key packages are idealized and the output
key packages (output of xtr or xpd, not to be confused with the output keys of key
schedule) inherit the idealization bit 𝑏 of the game. As a result, the input keys for the

15This is indeed the essential reason for existence of Oracle Diffie-Hellman assumption introduced
by Abdalla, Bellare, and Rogaway . Some favor of the assumption is crucial for security analysis of
Diffie-Hellman-based protocols where the DH secret is hashed with hash function 𝐻 or fed into a key
derivation function such as xtr (i.e. hmac). Since DH secrets 𝑔𝑥𝑦 can not be idealized, the assumption
idealizes the hash value 𝐻 (𝑔𝑥𝑦) of the secrets.

16Xtr𝑏hs, [𝑑] is the only Xtr package that is idealized.

94

Qhs,UNQhs

Qesalt,UNQesalt

GETesalt,
Xtrhs,

Qdh
UNQdh

NKeydh

Qhs
UNQhs

Keyhs,
SEThs,

GEThs,

SETdh
GETdh,0.. -1, +1..d

XTRhs,

Logdh

Loghs

Z

Db

GETdh,

Qesalt
UNQesalt

Keyesalt,
SETesalt,

LogesaltR1

1

Figure 23: Games Gxtr2𝑏hs,ℓ for 𝑏 ∈ {0, 1} (copied with permission from [BDLE+21])

95

QCN, UNQCN

Qn1, UNQn1

GETn1,

HASH

XpdCN,

Qn1

UNQn1

Keyn1,

QCN

UNQCN

KeyCN,

SETCN,

GETCN,

SETn1,

XPDCN,

Logn1

LogCN

D

D

1

b

HASH
Hash1

(n1,):=prntn(n)
CN:=chldrnn(n1)

Figure 24: Games Gxpd𝑏
𝑛,ℓ

for 𝑏 ∈ {0, 1} (copied with permission from [BDLE+21])

next xtr or xpd operation (children of a node in the parenting graph 11) in the key
schedule are stored in an idealized key package, which allows to reduce the modular
psuedorandomness assumption for the next operation. Naturally, the hybrid argument
begins with the idealized key package Key1

psk,0 for the application PSKs. Figure 24
shows the security games of another modular pseudorandomness assumption for xpd
operations but with the similar pattern for the key packages. The game is parameterized
by an expand key name 𝑛 (with parent 𝑛1) and level ℓ. The input key package Key1

𝑛1,ℓ

is idealized by the previous reduction and the output key packages Key𝑏
𝐶𝑁,ℓ

inherit the
idealization parameter from the game. Notice that all the keys 𝐶𝑁 derived from the
same parent key 𝑛1 are idealized at the same time.

At the end of the hybrid argument, BDEFKK arrive at the game Gks1(S) where S
is the composition of some of the existing packages and, more importantly, output key
packages Key1

𝑂∗,[𝑑]
17 are idealized. Moreover, these idealized key packages are backed

by the Log packages Log𝐹
𝑂∗ with full uniqueness functionality. Similar to pattern 𝑅,

the pattern 𝐹 also does not tolerate any key collisions but always aborts with the same
symbol 𝑎𝑏𝑜𝑟𝑡 when two handles have the same keys, regardless of the levels and
honesty bits. Since the key package Key1

𝑂∗,[𝑑] is idealized, honest keys are sampled
randomly and, intuitively, the collision probability of honest keys can be bounded
with a birthday bound while causing collisions of honest and dishonest keys should
be reduced to computational assumptions for xpd operations. Concretely, in two
game hops, BDEFKK replace the packages Log𝐷

𝑂∗ with Log𝐹
𝑂∗ as well as the packages

Log𝑅esalt with Log𝐷esalt by reducing to modular pre-image resistance assumptions for xpd
functions, which in turn they reduce to standard pseudorandomness of xpd. Recall
that the 𝐷 pattern only aborts when two dishonest handles have a key collidion. As a
result, it suffices to show that at the end of the hybrid argument we arrive at a game
with Log packages Log𝐷

𝑂∗ . From here, we make two additional game hops as described
to arrive at the game with packages Log𝐹

𝑂∗ . Interestingly, the pattern 𝐷 (dishonest key
uniqueness) propapagtes backwards in the key schedule due to the collision resistance
of the xpd and xtr operations. Since handles resemble key derivations steps, collision

17Key1
𝑂∗ , [𝑑] is an abuse of notation when we refer to the collection of packages {Key1

𝑛,ℓ
}𝑛∈𝑂∗ ,ℓ∈[𝑑] .

96

resistance of the key derivation functions translate to the difficulty of constructing two
distinct extract or expand handles using the XPD and XTR oracles that map to the
same key. For example, if the key derived by XPD(ℎ1, 𝑟, 𝑎𝑟𝑔𝑠) and XPD(ℎ2, 𝑟, 𝑎𝑟𝑔𝑠)
are the same, after reducing to collision resistance assumption of xpd and xtr, we can
conclude ℎ1 and ℎ2 map to the same key in the corresponding Log packages. The 𝐷
pattern back propagation (up the ladder of game Gks0) transitively brings dishonest
key uniqueness assertions closer to the base keys: DH secrets and PSKs. Therefore,
assuming collision resistance of xtr and xpd operations, uniqueness of dishonest base
keys transitively imply uniqueness of output keys. In Lemma D.3 of [BDLE+21],
BDEFKK indeed prove this claim by replacing all 𝑍 and 𝐴 patterns (except for Log𝑍dh)
of the Log packages with 𝐷 pattern. Lemma D.3 is itself a mini hybrid argument with
code equivelances and reductions to the collision resistance assumptions of xpd and xtr
operations. In an important code equivalence proved in Claim D.7.1 of [BDLE+21],
BDEFKK show that all 𝑍 and 𝐴 patterns can be replaced with 𝐷 patterns, after having
made xtr and xpd operations collision-free. As we will see, uniqueness of dishonest
base keys are guaranteed by the mapping parameters 𝑚𝑎𝑝 = ∞ and 𝑚𝑎𝑝 = 1 of the
Log packages Log𝑍∞dh and Log𝐴1

psk.
To summarize the hybrid argument, we present the initial (𝐻0) and final (𝐻8𝑑+6)

games of the hybrid argument, where 𝑑 is the number of resumption levels. Figures
25a and 25b depict the visualization of the games Gcore0 and Gcore1, respectively.
Again, we consider the figures as the definition of the games. BDEFKK refer to the
games Gcore0 and Gcore1 by the core key schedule security games and prove in the
core key schedule theorem via the aforementioned idealization hybrid argument that
Gcore0 and Gcore1 are indistinguishable. Concretely, they define 𝐻0 := Gcore0 after
8𝑑 +6 game hops, arrive at 𝐻8𝑑+6 := Gcore1. Each game hop is an SSP-style reduction
(graph cut) to the modular computational assumptions. One of the game hops reduce
to the modular SODH assumption. Another game hop repalces 𝐴 and 𝑍 patterns with
𝐷 pattenrs by reducing to the collision resistance of xtr and xpd operations. One game
hop reduces to the collision resistance of hash function hash used for computing hash
digest of transcripts. One game hop replaces the 𝐷 pattern of output key packages with
the 𝐹 pattern by reducing to modular pre-image resistance assumption. In two other
game hops, the pattern 𝐷 of the package Key0

esalt,[𝑑] is replaced with the pattern 𝑅 (for
reduction to SODH assumption) and then replaced back with the pattern 𝐷. The other
8𝑑 game hops idealize the key packages in each of the 𝑑 levels. One can define an
equivalence class on the TLS 1.3 key names such that two keys are equivalent if they
are derived from the same parent key. For example, client application traffic 𝑘sat and
server application traffic 𝑘sat are equivalent because both are derived with an expand
operation applied the same handshake secret 𝑘hs but different labels. This equivalence
relation induces eight classes: three singleton classes for the extract keys ({es}, {hs},
{as}) and five classes for the expand keys ({eem, cet, bind, esalt}, {cht, sht, hsalt},
{sat, cat, rm}, {psk}) The idealization order in each level idealizes one equivalence
class at a time, i.e. all the children of the same parents at the same time. Hence, 8𝑑
game hops are necessary for idealization of all key packages.

We refer the reader to Appendix A of [BDLE+21] for the definition of all modular

97

KeyN*, 0..d
0 LogN*

DHEXP
DHGEN

DH Nkeydh Logdh

SETdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETN*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0
Keypsk, 1..d

1
0 Logpsk

A1

HASH Hash0
HASH

GETO*,0..d

Z

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
0

QN*
UNQN*

Qdh
UNQdh

Qpsk
UNQpsk

(a) Game Gcore0

XTRes/as/hs,0..d
XPDXPN, 0..d

Xtres/as,0..d
Xtrhs,0..d
XpdXPN, 0..d

0
1

DHEXP
DHGEN

DH
SETdh

QI*
UNQI*

Qdh
UNQdh

Qpsk
UNQpsk

KeyI*, 0..d
1 LogI*

Nkeydh Logdh

SETpsk,0

GET0salt,0..d
GET0ikm,0..d

SETI*,0..d
GETI*,0..d

0Key0salt
0Key0ikm

GETdh,0..d

GETpsk,0..d
SETpsk, 1..d

Z

Keypsk, 0..d
1 Logpsk

D1

HASH Hash1
HASH

D

QO*
UNQO*

KeyO*, 0..d
1 LogO*

GETO*,0..d

F
SETO*,0..d

(b) Game Gcore1

Figure 25: Core key schedule security games Gcore𝑏 (copied with permission from
[BDLE+21]): observe that package Check is not needed for idealization

98

assumptions and Appendix D for the formal definition of the hybrid games and
reductions to modular assumptions.

3.3.3 Mapping parameters

We now explain why the infinity mapping pattern 𝑚𝑎𝑝 = ∞ is used for the pack-
age Log𝑍∞dh and dishonest key uniqueness functionality is propapagted from the
Log𝐷

𝑂∗ to Log𝑍∞dh . Imagine in the game Gxtr2𝑏hs,ℓ, the adversary is allowed to set
the same DH secret (say 𝑘dh = 𝑔𝑥𝑦𝑟) under two distinct dishonest DH handles
(say ℎdh = dh⟨sort(𝑔𝑥 , (𝑔𝑦)𝑟)⟩ and ℎ′dh = dh⟨sort(𝑔𝑦, (𝑔𝑥)𝑟)⟩ for honest shares
𝑔𝑥 and 𝑔𝑦 but adversarially chosen 𝑟) and mixes them with an honest handle
ℎesalt. The adversary can set these handle by calling ℎdh = DHEXP(𝑔𝑥 , (𝑔𝑦)𝑟)
and ℎ′dh = DHEXP(𝑔𝑦, (𝑔𝑥)𝑟). Two distinct dishonest handles ℎhs ≠ ℎ

′
hs are returned

by XTRhs,ℓ while two distinct (with high probability) keys 𝑘hs ≠ 𝑘
′
hs are sampled by

the oracles SEThs,ℓ (ℎhs, 1, xtr(𝑘esalt, 𝑔
𝑥𝑦𝑟)) and SEThs,ℓ (ℎ′hs, 1, xtr(𝑘esalt, 𝑔

𝑥𝑦𝑟)) of the
idelaized key package Key1

hs,ℓ in the ideal game Gxtr21
hs,ℓ. An adversary can easily

distinguish the real and ideal games by comparing the output keys from GEThs,ℓ (ℎhs)
and GEThs,ℓ (ℎ′hs). These two keys are the same in the real game but distinct with high
probability in the ideal game. This trivial attack is prevented with the infinity mapping
pattern 𝑚𝑎𝑝 = ∞. (It could have also been prevented by Log𝐷dh.) Instead of directly
aborting the game (imagine Log𝐷dh) when two distinct dishonest DH handles correspond
to the same DH secret value, BDEFKK use the mapping 𝑚𝑎𝑝 = ∞ parameter for
the package Log𝑍∞dh to indirectly abort the game in case of such a collision. (They
delay the game abort.) We illustrate the infinity mapping behaviour of the package
with an example. Let ℎ1 := ℎdh be the previously defined dishonest DH handle for
the previously defined DH secret 𝑘1 := 𝑘dh set via oracle SETdh of NKeydh such that
𝐾dh [ℎ1] = (𝑘1, 0) and Logdh [ℎ1] = (ℎ1, 0, 𝑘1). When SETdh(ℎ2, 0, 𝑘1) is queried
for the DH handle ℎ2 := ℎ′dh, UNQdh(ℎ2, 0, 𝑘1) is queried to the Log package and
Logdh [ℎ2] = (ℎ1, 0, 𝑘1) is set (ℎ2 is mapped to ℎ1) and ℎ1 is returned. Since ℎ2 ≠ ℎ1,
ℎ1 is also returned from SETdh(ℎ2, 0, 𝑘1) and 𝐾dh [ℎ2] is not set. As a result, the
adversary is forced to only use the handle ℎ1 to refer to the key 𝑘1 and if it queries
XTRhs,ℓ (ℎesalt, ℎ2) with handle ℎ2, the oracle GETdh,ℓ (ℎ2) aborts (indirect abort) when
asserting 𝐾dh [ℎ2] ≠ ⊥. However, the game does not abort (delayed abort) if the
adversary refrains from such a query on non-existing entries. The adversary notices a
mapping has occured when it receives ℎ1 instead of the expected handle ℎ2 from the
second query DHEXP(𝑔𝑦, (𝑔𝑥)𝑟) which calls SETdh(ℎ2, 0, 𝑘1).

As motivated in Section 3.1.1, an adversary can easily force two TLS sessions to
share the same DH secret. (A man-in-the-middle attacker can choose 𝑟 and replace
clieant and server shares with (𝑔𝑥)𝑟 and (𝑔𝑦)𝑟 , respectively.) BDEFKK choose not to
abort the games on such easily created collisions immediately, but rather delay the abort
to future if the adversary is curious to query the key package on non existing entry.
This indirect or delayed abort behaviour aligns with the mapping behaviour of the Log
package. As a result, the idealization hybrid argument requires the package Log𝑍∞dh
with infinity mapping to reduce to the security games Gsodh𝑏 and Gxtr2𝑏. However,
the game Gks0 uses the package Log𝑍dh without the mapping. BDEFKK prepares Gks0

99

Xtres/as,0..d

Xtrhs,0..d

XpdXPN, 0..d

GETbinder, 0..dXPDXPN, 0..d

XPDXPN, 0..d

DH
SETdh

DHEXP

DHGEN

SETpsk,0

GET0salt,0..d

GET0ikm,0..d

XTRes/as/hs,0..d

XPDXPN, 0..d

GETdh,0..d

GETpsk,0..d

SETpsk, 1..d

0
0

HASH

Map

DHEXP

DHGEN

SETpsk,0

GETO*,0..d

Check

XTRes/as/hs,0..d

SETI*,0..d

GETI*,0..d

GETO*,0..d

SETO*,0..d

Nkeydh Logdh

0Key0salt,0..d

0Key0ikm,0..d

Z

Keypsk, 0

Keypsk, 1..d

1
0 Logpsk

A1

Hash0

KeyI*, 0..d

0 LogI*

Z

KeyO*, 0..d

0 LogO*

Z

Qdh

UNQdh

Qpsk

UNQpsk

QI*

UNQI*

QO*

UNQO*

Figure 26: Game Gks0Map (copied with permission from [BDLE+21])

for the indealization hybrid argument with a game hop in Lemma C.2 of [BDLE+21]
by replacing Gks0 with the code equivalent game Gks0Map. The game Gks0Map replaces
the package Log𝑍dh with Log𝑍∞dh at the cost of introducing a new mapping package
Map. Figure 26 shows visualization of the game Gks0Map. We consider the figure as
the formal game definition and refrain from defining it with parallel and sequential
composition (as we did for Gks0 and Gks1(S)). The only differences between Gks0 and
Gks0Map are the packages Log𝑍∞dh , Log𝐴1

psk, and Map. We will shortly discuss the mapping
𝑚𝑎𝑝 = 1 in the package Log𝐴1

psk.
The idea of introducing the package Map is to proxy all oracle calls and prevent

the delayed abort occurence all together by hiding the old handle ℎ1 returned from
an oracle query (e.g. DHEXP(𝑔𝑦, (𝑔𝑥)𝑟) or SETdh(ℎ2, 0, 𝑘1)). These proxied oracles
in the package Map return the new expected handle (external view) to the adversay
instead of the old handle stored in the key table when a mapping is triggered in the Log
package. Moreover, the package Map retains the new to old handle mapping in a table
so that it maps a new handle used by the adversary to the old handle (internal view)
stored in its table to avoid the delayed aborts. For example, we reuse the variables
from our example for infinity mapping behaviour of the Log package. Concretely, the
proxied oracle DHEXP exposed by the package Map returns the handle ℎ2 (external
view) to the adversary instead of ℎ1 (internal view) and maintains the mapping from
ℎ2 to ℎ1 in the package table. The mapping information helps to replace the handle
ℎ2 with ℎ1 and retrieve key 𝑘1 from the key package when the adversary queries
foro example XTR(ℎesalt, ℎ2) in the future using the handle ℎ2. In other words, the
adversary queries and receives external handles while external handles are mapped to
internal handles by the Map package. As a result, internal handles are hidden from the
adversary. Any adversary A against the game Gks0Map uses external handles but does
not experience any aborts when calling the key derivation functions with colliding

100

DH handles. Observe that Figure 26 depicts the core key schedule security real game
Gcore0. We consider the figure as a definition and do not give an explict definition
with sequential and parallel compositions separately. Any adversary against the game
Gcore0 uses internal handles and does experience oracle aborts when calling the key
derivation functions with colliding handles. In Lemma C.2 of [BDLE+21], relying
on Theorem 2.3, BDEFKK prove the code equivalence Gks0 𝑐𝑜𝑑𝑒≡ Gks0Map using a
pen-and-paper invariant argument similar to proof of Claim 2.7. We take steps towards
automatization of this proof with SSBee in Section 4. We present the state relations
BDEFKK use as well as a few other state relations necessary to verify same-output
proof obligations. We were also able to verify invariance of some these state relations
with SSBee.

Before presenting the pseudocode of the Map package, we elaborate on the mapping
parameter 𝑚𝑎𝑝 = 1 for the package Log𝐴1

psk. The back propagation of 𝐷 pattern also
reaches the base key PSK. In other words, if the adversary is allowed to set the
same PSK under two distinct dishonest PSK handles, there will be two distinct and
dishonest handles for each of the output keys derived from the PSK. Notice that
we prevented the adversary from setting an application PSK under two dishonest
application PSK handles with the pattern 𝐴 of the package Log𝐴psk in game Gks0.
However, as motivated in Section 3.1.1, the adversary may set an application PSK of a
session with the resumption PSK of another session. This is possible in the security
model by setting a dishonesy application PSK with a dishonest resumption PSK for
some level computed by the adversary and the game. Therefore, it is preferred to
abort on all dishonest PSK collisions (between dishoenst appliction and resumption
PSKs) with the package Log𝐷psk. However, in an approach similar to the choice of
infinity mapping, BDEFKK choose to delay aborting the game and map the handle of
the resumption PSK to the handle of the application PSK (or the other way around
depending on which were set first in the game) with the one-time mapping 𝑚𝑎𝑝 = 1.
The difference between one-time and infinity mapping is that one-time mapping only
maps a dishonest handle ℎ2 to dishonest handle ℎ1 only once for each key value and
{level(ℎ1), level(ℎ2)} = {0, ℓ} where ℓ ≠ 0 (i.e. exactly one of them is a resumption
PSK handle and the other one is an application PSK handle). In other words, the
first time UNQpsk (ℎ1, 0, 𝑘) is queried with key 𝑘 , a Log entry Log[ℎ1] = (ℎ1, 0, 𝑘)
is created. The second time UNQpsk (ℎ2, 0, 𝑘) is queried with the same key 𝑘 , the
handle ℎ2 is mapped to ℎ1 a Log entry as Log[ℎ2] = (ℎ1, 0, 𝑘) and 𝐽psk [𝑘] = 1 is set.
(Recall the key flag table 𝐽𝑛 of the Log package.) The third time UNQpsk (ℎ3, 0, 𝑘)
is queried with the same key 𝑘 , 𝐽psk [𝑘] = 1 and no mapping occurs but rather the
pattern 𝑃 condition is checked. As a result, when 𝑃 = 𝐷, the game aborts on the
third query but when 𝑃 = 𝐴, the game aborts only if ℎ3 is an application PSK handle
colliding with another application PSK handle. Notice, though, no mapping occurs if
two dishonest resumption PSK handles share the same key. This is due to the fact that
resumption PSKs are output of xpd operations and after having reduced to collision
resistance of xpd, a collision of resumption PSKs transitively imply a collision of
an application PSK with another application PSK or a resumption PSK. Moreover,
one-time mapping of collisions between a resumption PSK and an application PSK

101

is enough. Let ℎ1 be a dishonest handle of a resumption PSK and ℎ2 be a dishonest
handle of an application PSK such that they are both mapped to the same key 𝑘psk.
Without loss of generality, the Log table entries is as follows: Log[ℎ1] = (ℎ1, 0, 𝑘psk)
and Log[ℎ2] = (ℎ1, 0, 𝑘psk). (i.e. ℎ2 is mapped to ℎ1) If UNQpsk (ℎ3, 0, 𝑘) is queried
to the package Log𝐴1

psk (or Log𝐷1
psk) where ℎ3 ≠ ℎ2 is a handle of the resumption PSK 𝑘psk

(i.e. a second collision), then ℎ3 and ℎ2 are two colliding resumption PSK violating
the collision resistant xpd. Simialarly, if UNQpsk (ℎ3, 0, 𝑘) is queried where ℎ3 ≠ ℎ1
is a handle of the application PSK 𝑘psk, then ℎ3 and ℎ1 are two colliding application
PSK caught by the semantics of the 𝐴 pattern. The last observation is crucial for the
proof of Lemma C.2 as the adversary can not distinguish the package Log𝐴psk being
replaced with Log𝐴1

psk. (We will show that the mapping does not prevent an abort
of the 𝐴 pattern.) We will get back to this point again in Section 4 when verifying
the same-output and equal-aborts proof obligations for the exposed oracle SETpsk,0.
Analogous to infinity mapping, delaying game abort with one-time mapping is used
by the proxy mapping package Map to hide the abort from the adversary.

We now describe how delaying the game abort can help hiding it from the adversary
using the proxy package Map. Figure 27 shows the pseudocode of the package Map. The
Map package exposes all the oracles exposed by the game Gks0. Observe that an oracle
query DHEXP(𝑋,𝑌) returns the external expected handle dh⟨sort(𝑋,𝑌)⟩ while stores
the possibly mapped handle returned by the original DHEXP of the package DH in the
table 𝑀dh,⊥.

The oracle XTR(ℎ1, ℎ2) first retrieves the internal handles M𝑖1 [ℎ1] and M𝑖2 [ℎ2]
of the external handles ℎ1 and ℎ2. In the next step, it computes the level ℓ′ to call
the oracle XTR𝑛,ℓ′ of the correct package Xtr𝑛,ℓ′ . Exactly one of the given parent
handles is leveled and maps to an internal handle with level level ℓ′. The level ℓ′ is
different from ℓ only if the input handles (external handles) are derived from a mapped
PSK handle, not necessarily in the same level ℓ. Notice that XTR𝑛,ℓ (ℎ1, ℎ2) calls
ℎ′ = XTR𝑛,ℓ′ (M𝑖1 [ℎ1],M𝑖2 [ℎ2]) with the internal handles to avoid abort. The mapping
table helps to prevent abort with this delayed mechanisms., Essentially, internal handles
are hidden from the adversary. Finally, the external handle ℎ = xtr⟨𝑛, ℎ1, ℎ2⟩ expected
by the adversary is returned to the adversary and ℎ is mapped to ℎ′ with 𝑀𝑛,ℓ [ℎ] = ℎ′.
Observe that if 𝑀𝑛,ℓ [ℎ] ≠ ⊥, then 𝑛 = name(ℎ) and level(ℎ) = ℓ. As a result, the
assertions in the beginning of the code ensure that ℎ1 and ℎ2 are the legitimate parent
handles of newly constructed handle ℎ. (i.e. they have the proper names and levels.)
Looking forward to Section 4, this property can be proved as a one-sided state relation
(state relation about the state of only one game, i.e. Gks0Map) via induction because
assuming the property holds for the given parent handles ℎ1 and ℎ2 (i.e. level(ℎ1) = ℓ1
and level(ℎ2) = ℓ2), we can show using the assignment 𝑀𝑛,ℓ [ℎ] ← ℎ′, structure
xtr⟨𝑛, ℎ1, ℎ2⟩ of ℎ, and recursive definition of level function that the property holds for
ℎ. We will give more examples of one-sided state relations and one-sided invariants
in Section 4. We will also prove the invariant bubbling theorem for the one-sided
invariants.

The oracle XPD(ℎ1, 𝑟, args) has a similar structure to XTR(ℎ1, ℎ2) by first re-
trieving the internal handle M𝑖1 [ℎ1] of the given external parent handle ℎ1. Key

102

Map

State

𝑀𝑛,ℓ : mapping table

SETpsk,0(ℎ, ℎ𝑜𝑛, 𝑘)
Mpsk,0 [ℎ] ← SETpsk,0(ℎ, ℎ𝑜𝑛, 𝑘)
return ℎ

DHGEN()
return DHGEN()

DHEXP(𝑋,𝑌)
ℎ← dh⟨sort(𝑋,𝑌)⟩
ℎ′ ← DHEXP(𝑋,𝑌)
M𝑑ℎ,⊥ [ℎ] ← ℎ′

return ℎ

XTR𝑛∈{es,hs,as},ℓ (ℎ1, ℎ2)
𝑖1, 𝑖2 ← PrntIdx(n, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
assert M𝑖2 [ℎ2] ≠ ⊥
if level(M𝑖1 [ℎ1]) ≠ ⊥ :
ℓ′ ← level(M𝑖1 [ℎ1])

else :
ℓ′ ← level(M𝑖2 [ℎ2])

ℎ← xtr⟨𝑛, ℎ1, ℎ2⟩
ℎ′ ← XTR𝑛,ℓ′ (M𝑖1 [ℎ1],M𝑖2 [ℎ2])
Mn,ℓ [ℎ] ← ℎ′

return ℎ

XPD𝑛∈XPN,ℓ (ℎ1, 𝑟, args)
𝑖1, _← PrntIdx(n, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
𝑙𝑎𝑏𝑒𝑙 ← Labels(𝑛, 𝑟)
ℓ1 ← level(M𝑖1 [ℎ1])
ℎ← xpd⟨𝑛, 𝑙𝑎𝑏𝑒𝑙, ℎ1, args⟩
ℎ′ ← XPD𝑛,ℓ1 (M𝑖1 [ℎ1], 𝑟, args)
if 𝑛 = psk then ℓ ← ℓ + 1
M𝑛,ℓ [ℎ] ← ℎ′

return ℎ

GET𝑛∈𝑂∗,ℓ (ℎ)
assert M𝑛,ℓ [ℎ] ≠ ⊥
return GET𝑛,level(M𝑛,ℓ [ℎ]) (M𝑛,ℓ [ℎ])

Helpers

PrntIdx(es, ℓ)
return (0salt), (psk, ℓ)

PrntIdx(hs, ℓ)
return (esalt, ℓ), (dh)

PrntIdx(as, ℓ)
return (hsalt, ℓ), (0ikm)

PrntIdx(n, ℓ)n∈𝑁xpd

(n1, _) ← PrntN(n)
return (n1, ℓ), ()

Figure 27: Package Map

derivation is invoked with the internal handle M𝑖1 [ℎ1]. Finally, a new external handle
is constructed and is mapped to the internal handle computed by the key derivation
oracle.

Missing from the work of [BDLE+21] is the initialization of the mapping table
with the identity mapping of handles noDH⟨alg⟩, noPSK⟨alg⟩, 0ikm⟨alg⟩, and 0salt.
The reason for the mapping is the assertions in the beginning of the code of oracles
XTR and XPD. These oracles expect given handles exist in the mapping table. These
handles should all map to themselves as they all also map to themselves in the Log
table. (e.g. Logdh [noDH⟨alg⟩] = (noDH⟨alg⟩, 0, 0len(alg)))

103

GETbinder, 0..dXPDXPN, 0..d

XPDXPN, 0..d

XTRes/as/hs,0..d

XPDXPN, 0..d

DH
SETdh

DHEXP

DHGEN Nkeydh Logdh

SETpsk,0

GET0salt,0..d

GET0ikm,0..d

Xtres/as,0..d

Xtrhs,0..d

XpdXPN, 0..d

0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d

SETpsk, 1..d

0

Z

Keypsk, 0

Keypsk, 1..d

1
1 Logpsk

1

D1

HASH Hash1

Map

DHEXP

DHGEN

SETpsk,0

GETO*,0..d

Check

XTRes/as/hs,0..d

KeyI*, 0..d

1 LogI*

SETI*,0..d

GETI*,0..d
 D

KeyO*, 0..d

1 LogO*

GETO*,0..d

F
SETO*,0..d

Qdh

UNQdh

Qpsk

UNQpsk

QI*

UNQI*

QO*

UNQO*

Figure 28: Game Gks1Map (copied with permission from [BDLE+21])

3.3.4 Applying the core key schedule security

Having prepared the scene, BDEFKK have ensured collision-free dishonest keys for
the base keys (DH secrets and PSKs) with the Log packages Log𝑍∞dh and Log𝐴1

psk. Recall
that Gks0Map is code equivalent to the composition of reduction package Rch-map with
the core key schedule real security game Gcore0. (i.e. Gks0Map 𝑐𝑜𝑑𝑒≡ Rch-map → Gcore0)
BDEFKK define another hybrid game Gks1Map (visualized in figure 28). In a game
hop from, they replace the game Gks0Map with Gks1Map by reducing (with reduction
Rch-map) to the core key schedule security games Gcore𝑏.

3.3.5 Removing the mapping

As mentioned in Section 3.1.1, TLS 1.3 ensures uniqueness of the output keys by
including the DH shares of the client and the server (in order) into the transcript and
mixing the hash digest of the transcript when computing output keys (the last xpd
derivation). Moreover, TLS 1.3 includes PSK binder value (modeled as the binder
key 𝑘𝑏𝑖𝑛𝑑𝑒𝑟 in the security model) in the transcript (end of Client Hello message) for
psk_ke or psk_dh_ke key exchange modes. The binder value itself is computed from
𝑘𝑏𝑖𝑛𝑑 using xpd, which is in turn computed indirectly from the PSK but with PSK
type indicator labels ext binder or res binder. In any case, transcript is included in
the very last xpd operation deriving each of the eight output keys. Despite being a
complicated and twisted design, it allows to prove output key uniqueness. In Lemma
C.5 of [BDLE+21], BDEFKK slightly modify the mapping package Map in order to
remove the output key retrieval oracle GET𝑂∗,[𝑑] from the mapping package Map. As a
result, all calls to the oracles GET𝑂∗,[𝑑] (ℎ) are forwarded directly to the output key
packages Key1

𝑂∗,[𝑑] . Notice that the adversary queries Key1
𝑂∗,[𝑑] with external handles

104

of the output keys while random and unique output keys are stored under internal
handles. BDEFKK modify the XPD𝑂∗,[𝑑] oracles of the mapping package Map so that
that for any external handle ℎ𝑛 of an output key name 𝑛 ∈ 𝑂∗, 𝑀𝑛,ℓ [ℎ𝑛] = ℎ𝑛 and the
output key is stored under ℎ𝑛. As a prerequisitive of this transformation, it is required
that no two external handles map to the same internal handle. (i.e. an output key can
not be stored under two distinct handles.) In Claim C.5.1 of [BDLE+21], BDEFKK
prove the injectivity of the mapping table 𝑀𝑛,ℓ [ℎ𝑛] for all external handles ℎ𝑛 of the
output keys. They benefit from the transcript checks by the Check package in the
injectivity proof. Recall the Check package ensured when deriving early output keys
{eem, cet, binder}, the provided transcript contains the binder value corresponding to
the provided handle. This ensures that level of the handle, which determines the type
of PSK, has a correspondence with the transcript via the binder value. Moreover, the
Check package made sure the DH shares in the handle structure are included in the
transcript, which is hashed and used as an input for xpd. Both these checks prove the
injectivity of handles for the output keys.

In order to set output keys under the external handles, they modify the code of
XPD𝑛,ℓ oracles computing the output keys, i.e. for all 𝑛 ∈ 𝑂∗ and ℓ ∈ [𝑑]. However,
the package Map does not set keys in the key packages but rather proxy all XPD𝑛,ℓ

oracle calls for all expand keys 𝑛 ∈ 𝑁xpd to the Xpd𝑛,ℓ packages. BDEFKK modify the
code of package Map and cosntruct a new package Map-Xpd by inlining code of oracles
XPD𝑂∗,[𝑑] of the packages Xpd𝑂∗,[𝑑] so that Map-Xpd directly sets the output keys in the
key packages Key1

𝑂∗,[𝑑] . In the next step, they modify the code of package Map-Xpd and
cosntruct a new package Map-Xpd-Remap where they set output keys under the external
handles (instead of internal handles) and remap the external handles of the output
keys to achieve an identity mapping for them. We have presented the pseudocode of
packages Map-Xpd and Map-Xpd-Remap in Figures 30 and 31.

Notice that in the oracle XPD𝑛∈𝑂∗,ℓ of package Map-Xpd-Remap, output keys are set
under the external handle ℎ derived from the input handle ℎ1 given by the adversary.
Moreover, ℎ is mapped to itself, i.e. 𝑀𝑛,ℓ [ℎ] = ℎ.

Formally, they define the hybrid games GksMapXpd and Gks1 (visualized in Figures
29a and 29b with the shaded simulator package S) using the modified mapping
packages Map-Xpd and Map-Xpd-Remap, respectively. We consider the figures as the
definition of these two hybrid games. The only difference of these two hybrid games
with Gks1Map is the modified mapping packages.

BDEFKK prove the code equivalence Gks1Map 𝑐𝑜𝑑𝑒≡ GksMapXpd by simply inlining
the code of oracles XPD𝑛,ℓ of packages Xpd𝑛,ℓ for all 𝑛 ∈ 𝑂∗ and ℓ ∈ [𝑑] in the package
Map. Then, they show the code equivalence GksMapXpd 𝑐𝑜𝑑𝑒≡ Gks1 in Lemma C.5 of
[BDLE+21]. BDEFKK complete the proof of Theorem C.1 by letting the simulator S
(as shaded in Figure 29b) be the composition package of all the packages in the game
Gks1 except for packages Key1

𝑂∗,[𝑑] and Log𝑂∗ .
In a nutshell, proof of Theorem C.1 consists of five game hops:

Gks0 Lemma C.2≡ Gks0Map Reduction to Gcore𝑏≈ Gks1Map code inlining
≡ GksMapXpd Lemma C.5≡ Gks1.

where Gks𝑏Map 𝑐𝑜𝑑𝑒≡ Rch-map → Gcore𝑏 and Gcore0 Hybrid argument
≈ Gcore1.

105

DHEXP

DHGEN Nkeydh Logdh

SETpsk,0

GET0salt,0..d

GET0ikm,0..d

Xtres/as,0..d

Xtrhs,0..d

XpdC*, 0..d

XTRes/as/hs,0..d

XPDC*, 0..d
 0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d

SETpsk, 1..d

0

Keypsk, 0

Keypsk, 1..d

1
1 Logpsk

1

D1

HASH Hash1

Map-
Xpd

DHEXP

DHGEN

SETpsk,0

GETO*,0..d

Check

XTRes/as/hs,0..d

XPDXPN, 0..d

KeyI*, 0..d

1 LogI*

D

KeyO*, 0..d

1 LogO*

GETO*,0..d

F
SETO*,0..d

SETI*,0..d

GETI*,0..d

XPDXPN, 0..d

GETbinder, 0..d

DH
SETdh
 Qdh

UNQdh

Qpsk

UNQpsk

QI*

UNQI*

QO*

UNQO*

Z

(a) Game GksMapXpd: 𝐶∗ := 𝑁xpd \𝑂∗ is the set of all expand keys except the output keys

Qdh

UNQdh

Qpsk

UNQpsk

QI*

UNQI*

QO*

UNQO*

XPDXPN, 0..d
 XPDXPN, 0..d

GETbinder, 0..d

DH
SETdh

DHEXP

DHGEN Nkeydh Logdh

SETpsk,0

GET0salt,0..d

GET0ikm,0..d

Xtres/as,0..d

Xtrhs,0..d

XpdC*, 0..d

XTRes/as/hs,0..d

XPDC*, 0..d
 0Key0salt,0..d

0Key0ikm,0..d

GETdh,0..d

GETpsk,0..d

SETpsk, 1..d

0

Keypsk, 0

Keypsk, 1..d

1
1 Logpsk

1

D1

HASH Hash1
Map-
Xpd-

Remap

DHEXP

DHGEN

SETpsk,0

Check

XTRes/as/hs,0..d

KeyI*, 0..d

1 LogI*

D

KeyO*, 0..d

1 LogO*

GETO*,0..d

F
GETbinder,0..d

SETO*,0..d

SETI*,0..d

GETI*,0..d

Z

(b) Game Gks1

Figure 29: Games GksMapXpd and Gks1 (copied with permission from [BDLE+21])

106

Map-Xpd

State

𝑀𝑛,ℓ : mapping table

SETpsk,0(ℎ, ℎ𝑜𝑛, 𝑘)
Mpsk,0 [ℎ] ← SETpsk,0(ℎ, ℎ𝑜𝑛, 𝑘)
return ℎ

DHGEN()
return DHGEN()

DHEXP(𝑋,𝑌)
ℎ← dh⟨sort(𝑋,𝑌)⟩
ℎ′ ← DHEXP(𝑋,𝑌)
M𝑑ℎ,⊥ [ℎ] ← ℎ′

return ℎ

XTR𝑛∈{es,hs,as},ℓ (ℎ1, ℎ2)
𝑖1, 𝑖2 ← PrntIdx(n, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
assert M𝑖2 [ℎ2] ≠ ⊥
if level(M𝑖1 [ℎ1]) ≠ ⊥ :
ℓ′ ← level(M𝑖1 [ℎ1])

else :
ℓ′ ← level(M𝑖2 [ℎ2])

ℎ← xtr⟨𝑛, ℎ1, ℎ2⟩
ℎ′ ← XTR𝑛,ℓ′ (M𝑖1 [ℎ1],M𝑖2 [ℎ2])
Mn,ℓ [ℎ] ← ℎ′

return ℎ

XPD𝑛∈𝑁xpd\𝑂∗,ℓ (ℎ1, 𝑟, args)
𝑖1, _← PrntIdx(𝑛, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
𝑙𝑎𝑏𝑒𝑙 ← Labels(𝑛, 𝑟)
ℓ1 ← level(M𝑖1 [ℎ1])
ℎ← xpd⟨𝑛, 𝑙𝑎𝑏𝑒𝑙, ℎ1, args⟩
ℎ′ ← XPD𝑛,ℓ1 (M𝑖1 [ℎ1], 𝑟, args)
if 𝑛 = psk then ℓ ← ℓ + 1
M𝑛,ℓ [ℎ] ← ℎ′

return ℎ

XPD𝑛∈𝑂∗,ℓ (ℎ1, 𝑟, args)
𝑖1, _← PrntIdx(𝑛, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
𝑙𝑎𝑏𝑒𝑙 ← Labels(𝑛, 𝑟)
ℓ1 ← level(M𝑖1 [ℎ1])
ℎ← xpd⟨𝑛, 𝑙𝑎𝑏𝑒𝑙, ℎ1, args⟩
𝑛1, _← PrntN(𝑛)
ℎ′ ← xpd⟨𝑛, label,M𝑖1 [ℎ1], args⟩
(𝑘1, hon) ← GET𝑛1,ℓ1 (M𝑖1 [ℎ1])
𝑑 ← HASH(args)
𝑘 ← xpd(𝑘1, (label, 𝑑))
ℎ′ ← SET𝑛,ℓ (ℎ′, hon, 𝑘)
M𝑛,ℓ [ℎ] ← ℎ′

return ℎ

GET𝑛∈𝑂∗,ℓ (ℎ)
assert M𝑛,ℓ [ℎ] ≠ ⊥
return GET𝑛,level(M𝑛,ℓ [ℎ]) (M𝑛,ℓ [ℎ])

Figure 30: Package Map-Xpd

107

Map-Xpd-Remap

State

𝑀𝑛,ℓ : mapping table

SETpsk,0(ℎ, ℎ𝑜𝑛, 𝑘)
Mpsk,0 [ℎ] ← SETpsk,0(ℎ, ℎ𝑜𝑛, 𝑘)
return ℎ

DHGEN()
return DHGEN()

DHEXP(𝑋,𝑌)
ℎ← dh⟨sort(𝑋,𝑌)⟩
ℎ′ ← DHEXP(𝑋,𝑌)
M𝑑ℎ,⊥ [ℎ] ← ℎ′

return ℎ

XTR𝑛∈{es,hs,as},ℓ (ℎ1, ℎ2)
𝑖1, 𝑖2 ← PrntIdx(n, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
assert M𝑖2 [ℎ2] ≠ ⊥
if level(M𝑖1 [ℎ1]) ≠ ⊥ :
ℓ′ ← level(M𝑖1 [ℎ1])

else :
ℓ′ ← level(M𝑖2 [ℎ2])

ℎ← xtr⟨𝑛, ℎ1, ℎ2⟩
ℎ′ ← XTR𝑛,ℓ′ (M𝑖1 [ℎ1],M𝑖2 [ℎ2])
Mn,ℓ [ℎ] ← ℎ′

return ℎ

XPD𝑛∈𝑁xpd\𝑂∗,ℓ (ℎ1, 𝑟, args)
𝑖1, _← PrntIdx(𝑛, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
𝑙𝑎𝑏𝑒𝑙 ← Labels(𝑛, 𝑟)
ℓ1 ← level(M𝑖1 [ℎ1])
ℎ← xpd⟨𝑛, 𝑙𝑎𝑏𝑒𝑙, ℎ1, args⟩
ℎ′ ← XPD𝑛,ℓ1 (M𝑖1 [ℎ1], 𝑟, args)
if 𝑛 = psk then ℓ ← ℓ + 1
M𝑛,ℓ [ℎ] ← ℎ′

return ℎ

XPD𝑛∈𝑂∗,ℓ (ℎ1, 𝑟, args)
𝑖1, _← PrntIdx(𝑛, ℓ)
assert M𝑖1 [ℎ1] ≠ ⊥
𝑙𝑎𝑏𝑒𝑙 ← Labels(𝑛, 𝑟)
ℓ1 ← level(M𝑖1 [ℎ1])
ℎ← xpd⟨𝑛, 𝑙𝑎𝑏𝑒𝑙, ℎ1, args⟩
𝑛1, _← PrntN(𝑛)

(𝑘1, hon) ← GET𝑛1,ℓ1 (M𝑖1 [ℎ1])
𝑑 ← HASH(args)
𝑘 ← xpd(𝑘1, (label, 𝑑))
ℎ← SET𝑛,ℓ (ℎ, hon, 𝑘)
M𝑛,ℓ [ℎ] ← ℎ

return ℎ

GET𝑛∈𝑂∗,ℓ (ℎ)
assert M𝑛,ℓ [ℎ] ≠ ⊥
return GET𝑛,level(M𝑛,ℓ [ℎ]) (M𝑛,ℓ [ℎ])

Figure 31: Package Map-Xpd-Remap: Red and empty lines show changes from Map-Xpd

108

Proof of Lemma C.5, again, relies on Theorem 2.3 and is a pen-and-paper invariant
argument. Interestingly, BDEFKK express the injectivity property as a state relation
among a few other state relations. They prove Claim C.5.1 by showing the invariance
of their state relations. In this thesis, we only focus on formal verification of proof
obligations for Lemma C.2 and leave automatization of Lemma C.5 to a future work.
Remark. BDEFKK suggest in their work that TLS 1.3 standard be updated to extract
from DH secret together with DH shares immediately before mixing other keying
material for easier security reduction and more well-understood assumption (Oracle
Diffie-Hellman assumption by [ABR01] instead of Salted Oracle Diffie-Hellman
assumption analyzed in Section 5). Similarly, they recommend that the TLS 1.3
standard extracts from PSK values and their types (application or resumption) in the
beginning to make all keys collision-free and unique instead of only using ext/res

binder label for the binder value computation and indirectly including binder values in
the transcript used by output keys. These changes significantly reduce their reduction
complexity, eliminating mapping lemmata (Lemma C.2 and Lemma C.5) and Appendix
C altogether.

109

4 Towards Formal Verification of Key Schedule Se-
curity in SSBee

In this section, we discuss our verification approach to the TLS 1.3 key schedule
security reduction introduced in Section 3. We demonstrate some corrections to the
security model and additional lemmata necessary for verification. Furthermore, we
prove the invariant bubbling theorem and illustrate how it simplifies the verification.
Finally, we conclude with a a glossary of verification techniques in SSBee discovered
during this project.

As discussed in Section 3.3.3, Lemmata C.2 and C.5 of [BDLE+21] are the major
and most challenging code equivalence steps in the TLS 1.3 key schedule security
reduction. Relying on Theorem 2.3, BDEFKK have presented a set of state relations
and proved the same-output property and invariance of state relations on paper. Since
the key schedule security games consist of several packages with many lines of code,
their proof has spanned more than 10 pages. As mentioned in Section 2.5, SSBee
tries to automate this process and reduce the amount of proof work as soon as a
reasonable set of state relations are determined as stated for SSBee. In this thesis,
we focus on verifying the code equivalence presented in Lemma C.2 with SSBee
and defer verification of Lemma C.5 as well as the injectivity property to a future
work. Our work demonstrates that automatization of code equivalence proofs in large
scale cryptographic analysis for real world protocols (like TLS) with complex security
games is possible. However, we point out difficulties still present and future directions
for SSBee.

Recall that Lemma C.2 shows the code equivalence of the games Gks0 and Gks0Map.
Moreover, we saw in Section 2.5 that the first step for verification of a code equivalence
between two games in SSBee is to define the security games, their packages, and at
least the state relations between the games. Furthermore, some code equivalences
also need additional lemmata to be proved. We use the state relations presented
by BDEFKK and introduce new relations and auxiliary lemmata when necessary.
We begin with translating the pseudocode of packages composed in the games Gks0

and Gks0Map to the SSBee language. Due to the complexity and size of the games,
we generate the composition of packages with a script that directly outputs SSBee
composition files based on the key schedule security games topology. The script,
written in Python, also outputs the skeleton of the proof file that helps with iterative
and agile proof development by extracting required information (such as abstract
function package parameters) from the code of packages and automating generation of
otherwise boilerplate code. Relying on Theorem 2.3, we then proceed with proving the
verification obligations (same-output and equal-aborts properties, and invariance of the
state relations) for each oracle exposed by the games. Hereafter, for ease of referring
to the games Gks0 and Gks0Map, we call them left and right games, respectively.

110

4.1 Translation of games and packages pseudocode to SSBee
language

All packages in the left and right games except DH, Check, and Map are parameterized
with a name or level or both. There are at least two approaches to translate the packages
into SSBee language. One approach generates SSBee packages parameterized by
names and levels. This requires instantiating packages with concrete names and levels
for a concrete number of levels 𝑑 when defining the security games in composition
files. (See Section 2.5 for a discussion on the difference of SSP packages and SSBee
packages as well as the concept of package instances in SSBee.) That is, one has to
choose some 𝑑 (say 𝑑 = 3) for the maximum number of session resumption levels, and
instantiate all packages (for example Key𝑏

𝑛,ℓ
) for all names 𝑛 ∈ 𝑁 \ {dh, 0salt, 0ikm} and

levels ℓ ∈ {0, 1, 2, 3}. Therefore, the size of composition files (games) linearly grows
with the number of resumption levels. Precisely, since |𝑁 | = 18, there are 16 Log
packages Log𝑛 for 𝑛 ∈ 𝑁 \ {0salt, 0ikm}, 15 Key packages Key𝑏

𝑛,ℓ
in each resumption

level ℓ for 𝑛 ∈ 𝑁 \ {dh, 0salt, 0ikm} and 3 non-leveled global NKey packages NKey𝑛
shared among all levels for 𝑛 ∈ {dh, 0salt, 0ikm}, 14 Xpd packages Xpd𝑛,ℓ in level
ℓ = 0 and 15 packages in level ℓ > 0 for 𝑛 ∈ 𝑁xpd (psk is set directly as application
PSK in the first level but derived as a resumption PSK in higher levels), 3 Xtr packages
Xpd𝑛,ℓ in each level for 𝑛 ∈ {es, as, hs}, 3 packages DH, Check, and Hash shared
among all levels. In total, there are 22 global packages and 33 leveled packages; hence,
22 + 33𝑑 packages for 𝑑 resumption levels. Presumably, compositions are written
by an SSBee user and this growing number of package instances quickly go out of
control even for small 𝑑. We automate generation of the composition files with a
Python script. The script receives the number of resumption levels 𝑑 and generates
the composition files for the security games Gks0, Gks0Map, GksMapXpd, Gks1(S) by
instantiating all the necessary packages and constructing the call graph. Briefly, the
script uses a stack-based algorithm and starting from a stack with a single package
adversary, it pops a package from the stack, instantiates the packages with appropriate
concrete parameters (including function parameters), and pushes the dependencies of
the package to the stack. At the same time, it completes the call graph one package at a
time by adding edges and nodes for the dependencies of the popped package. Another
useful feature of the script is parsing package files 18 and extracting function parameters
signatures and automatically propagating them to the composition and proof files.
The script helped us to focus on translating package pseudocode in [BDLE+21] to
SSBee language and delegating generation of the boilerplate code of compositions
and the proof file function parameter definitions to the script. However, on each
invocation, SSBee took a long time (more than an hour) to compile our packages,
compositions and proof files to SMT-LIB code, only to then point out some parse
errors. Since modifying the package codes as well as adding invariants and lemmata
are the main parts of the iterative formal verification process, we decided to change our
translation approach to speed up the process. The root cause of the issue is the current

18We partially rewrite the SSBee language grammar—originally written in Parsing Expression
Grammar (PEG) syntax for the Pest parser library in Rust—in the Extended Backus-Naur form (EBNF)
syntax for the Lark parser library in Python.

111

implementation and architecture of SSBee. One observation is that SSBee currently
generates an SMT-LIB function for each oracle of each package 19 instance. This is
due to the fact that different package parameters can generate different SMT-LIB codes
for the oracles of the packages. Optimally, one would want to generate a template
SMT-LIB code for the oracles with placeholders for the parameters and then plugin
the correct concrete parameters for each package instance. However, this brings other
complexities that we prefer to leave it for a future investigations and optimizations of
SSBee for proofs with large compositions. Nevertheless, this project brought up such
an issue for the development team of SSBee. The SSBee project files and the Python
script of this approach are available online on our GitHub Repository [Raj25c] under
the directory tls13-key-schedule in the example projects directory.

The other translation approach is to remove package parameters and add name
and level as new arguments of the oracles. From the three leveled packages, the
key derivation packages Xtr𝑏

𝑛,ℓ
and Xpd𝑛,ℓ are stateless and can be easily adapted by

adding name and level as new arguments for their oracles, resulting in parameter-free
packages Xtr and Xpd. We will see how the idealization bit 𝑏 is also dropped. However,
removing name and level parameters from the leveled Key package collapses all such
packages and merge their key tables. Although it can be easily proved that the key
table 𝐾𝑛,ℓ stores handles ℎ such that name(ℎ) = 𝑛 and level(ℎ) = ℓ, which implies
that the tables 𝐾𝑛,ℓ have disjoint domains and supports the safe merge of the tables,
the first line of the oracle GET𝑛,ℓ (ℎ) exposed by the key package checks that the
given handle ℎ already exists in the table 𝐾𝑛,ℓ by asserting assert 𝐾𝑛,ℓ [ℎ] ≠ ⊥. This
assertion implicitly checks the name and level of the handle ℎ, discouraging any simple
merge of the tables such as 𝐾 [ℎ]. Nevertheless, we refrain from explicitly adding
such assertions to the code of the oracle GET𝑛,ℓ (ℎ) and keep the same semantics by
mapping tuples of (𝑛, ℓ, ℎ) to the keys (and their honesty bits) in the merged table 𝐾 ,
i.e. 𝐾𝑛,ℓ [ℎ] is syntactically replaced with 𝐾 [(𝑛, ℓ, ℎ)]. We even take one step further
and use the same idea to collapse all non-leveled Log packages into one package
and merge the Log tables and syntactically replace all appearances of Log𝑛 [ℎ] with
Log[(ℎ, ℎ)]. Notice that the same scenario is true for the Log tables Log𝑛 and they
store handles such that name(ℎ) = 𝑛 (i.e. their domains are disjoint) but the oracle
Q𝑛 (ℎ) checks for the existence of the handle ℎ in the Log table.

Apart from the names and levels, packages are instantiated with other parameters
such as function parameters, idealization bits, patterns, and mapping parameters
(for the Log packages). Notice that the idealization bit of the Key and Xtr packages
are a function of name, level, and the game, i.e. Gks0, Gks0Map, etc. Similarly, the
pattern and mapping parameters of the Log package depends on the name and the
game while the idealization bit of the Hash packages depends on only the game.
These observations were inspired by our Python script implementation. Therefore, we
introduce an auxiliary package Parameters that provide the collapsed packages with
these parameters but parametrized with the game. We will see the SSBee code of
translated packages and other auxiliary packages shortly. The SSBee project files of

19Precisely, the oracles of packages that are called directly or indirectly (recursively when inlined) by
the oracles exposed to the adversary.

112

this approach are available online on the same GitHub Repository [Raj25b] under the
directory tls13-key-schedule-parameterless in the example projects directory.

Before then, we want to compare the translation approaches. The first advantage
regards the resumption levels. The second approach allows us to verify the code
equivalence of the games for any number of resumption levels while the first approach
is essentially limited to the number of levels 𝑑 for which we have generated package
instances. Notice that SSBee does not support dynamic package instantiation in the
composition files because it does not support any iteration control flow statement in
the composition files. The second advantage considers the next step of the verification,
i.e. code equivalence proof. As mentioned earlier, Theorem 2.3 requires invariant
state relations. We saw in Section 2.5 that state relations should be expressed with
SMT-LIB language in a separate file and then referenced in the proof file. These
state relations express some relations between the states of the packages in the left
and right games; hence, they need to destructure the game states and extract tables
and variables from the relevant package states. SSBee internally generates a new
SMT-LIB data type for each package instance used in a game and naturally creates
a new field for the state of each package instance in the game state. As we will see
the state relations in this section, many state relations common to all Key packages
for all key names and in all resumption levels. Expressing such state relations needs
to state the state relations for each name and level as a separate formula. Since the
data types are syntactically different in the SMT-LIB language, one can not use a
universal quantifier. As a result, the invariant file would need to be automatically
generated which reduces its readability. Speaking of readability, the second approach
makes the composition files concise and more readable although we have adapted our
Python script to automatically generate them and facilitate the function parameters
propagation. Formalization of the game Gks0 with the second approach consists of less
than 300 lines of code for arbitrary number of resumption levels compared to the over
2000 lines of code for only 1 resumption level. On the other hand, the second approach
still hides the packages compositions from the reader, similar to the concise call graph
in Figure 21a compared to the preceding sequential-and-parallel-composition-based
definition. We, therefore, encourage the reader to run the Python script themselves or
investigate the repository of the first approach in which the TLS 1.3 security games are
generated for 3 resumption levels for the extended call graph of the games. Apart from
the hidden game composition, the second has an important disadvantage of blocking
verification of the core key schedule theorem. Recall from Section 3.3.2 that the code
key schedule theorem is proved via a hybrid argument and SSP-style reductions as
graph cuts to modular assumptions. The graph cuts are possible due to the separation
of key tables of the Key packages for different key names and levels. When all Key,
Log, Xtr, and Xpd packages are collapsed to only one package, it is not possible to
verify the graph cuts with SSBee. This is unfortunate as SSBee is designed to easily
express and verify SSP-style reductions and graph cuts. Thus, we leave the verification
of the core key schedule theorem in SSBee to a future work. We speculate that SSBee
suboptimal SMT-LIB translation issue mentioned earlier should not interfere with
reduction verification because no SMT-LIB translation is necessary and graph cuts
are checked algorithmically. However, we can’t confirm this statement or predict other

113

adversary

Xtr DH ExternalPskSetter OutputKeyGetter

Check

Names

Keyxtr0

Sample

Parameters

Xpd

HandlesLog Helpers

Hashxpd0 Labels

hash0

(a) Composition Gks0 (formalized Gks0)

adversary

Map

Check

MapTable

Names

Xtr XpdDH

Key Labels

Handles

xtr0

Sample

Parameters

Hashxpd0

Log Helpers hash0

(b) Composition Gks0Map (formalized Gks0Map)

Figure 32: Call graphs of compositions Gks0 and Gks0Map

possible complications as we did not look into this problem in this thesis.

114

4.1.1 Game compositions

Figures 32a and 32b shows the call graphs of the games Gks0 and Gks0Map as com-
positions of our collapsed packages and auxiliary packages. We adapt our Python
script from the first approach to generate composition file together with the call graph
diagrams.

Notice the auxiliary packages ExternalPskSetter, OutputKeyGetter, xtr0, xpd0,
hash0, Names, Handles, Labels, Helpers, and Parameters. Observe that packages Xtr,
Key, Log, and Hash depend on the package Parameters for the idealization bits and
other parameters.

1 composition Gks0 {

2 ...

3 instance pkg_Key = Key {

4 ...

5 }

6 ...

7 instance pkg_Parameters = Parameters {

8 params {

9 game: 0,

10 ...

11 }

12 }

13 ...

14 compose {

15 ...

16 pkg_Log: {

17 GET_LOG_PACKAGE_PARAMETERS: pkg_Parameters,

18 ...

19 },

20 pkg_Key: {

21 GET_KEY_PACKAGE_IDEALIZATION_PARAMETER: pkg_Parameters,

22 Q: pkg_Log,

23 UNQ: pkg_Log,

24 ...

25 },

26 pkg_ExternalPskSetter: {

27 GET_PSK_NAME: pkg_Names,

28 SET: pkg_Key,

29 },

30 pkg_OutputKeyGetter: {

31 GET: pkg_Key,

32 IS_OUTPUT_KEY: pkg_Names,

33 },

34 ...

35 adversary: {

36 DHEXP: pkg_DH,

37 DHGEN: pkg_DH,

38 GET: pkg_OutputKeyGetter,

39 SET: pkg_ExternalPskSetter,

40 XPD: pkg_Check,

41 XTR: pkg_Xtr,

42 }

115

43 }

44 }

Listing 3: Game Gks0 in SSBee

1 composition Gks0Map {

2 ...

3 pkg_Map: {

4 DHEXP: pkg_DH,

5 DHGEN: pkg_DH,

6 GET: pkg_Key,

7 GETMAP: pkg_MapTable,

8 GET_DH_NAME: pkg_Names,

9 GET_PSK_NAME: pkg_Names,

10 IS_OUTPUT_KEY: pkg_Names,

11 IS_PSK: pkg_Names,

12 IS_XPD_KEY: pkg_Names,

13 IS_XTR_KEY: pkg_Names,

14 LABEL: pkg_Labels,

15 PARENTS: pkg_Names,

16 SET: pkg_Key,

17 SETMAP: pkg_MapTable,

18 XPD: pkg_Xpd,

19 XTR: pkg_Xtr,

20 },

21 ...

22 instance pkg_Parameters = Parameters {

23 params {

24 game: 1,

25 ...

26 }

27 }

28 ...

29 compose {

30 ...

31 adversary: {

32 DHEXP: pkg_Map,

33 DHGEN: pkg_Map,

34 GET: pkg_Map,

35 SET: pkg_Map,

36 XPD: pkg_Check,

37 XTR: pkg_Map,

38 },

39 }

40 }

Listing 4: Game Gks0 in SSBee

Listing 3 shows part of the composition file for the formalization of the left game
Gks0 in SSBee. Listing 4 shows part of the composition file for the right game
Gks0Map. Observe that in the left game, Parameters package is instantiated with the
game parameter 0, encoding Gks0, while in the right game it is instantiated with game
parameter 1, encoding Gks0Map. Listing 5 shows the code of package Parameters.
Notice how we have delegated computation of the value of the pattern and mapping

116

parameters of the Log package to an abstract function. In Listing 6 we specify the
value of the abstract function at desired points in the SMT-LIB code. This code is
later on references by the proof file. Since SSBee becomes very slow when generating
SMT-LIB code if the code contains nested if-conditions, we delegate switch-case style
checks to abstract functions as part of out optimizations.

1 package Parameters {

2 params {

3 /*
4 0: Gks0,

5 1: Gks0Map,

6 2: GksMapXpd,

7 3: Gks1

8 */

9 game: Integer,

10 log_package_parameters: fn Integer, Bool, Bool, Bool, Bool -> (Integer, Integer),

11 }

12

13 import oracles {

14 IS_OUTPUT_KEY(n: Integer) -> Bool,

15 IS_INTERNAL_KEY(n: Integer) -> Bool,

16 IS_DH_KEY(n: Integer) -> Bool,

17 IS_PSK(n: Integer) -> Bool,

18 IS_HANDSHAKE_SECRET(n: Integer) -> Bool,

19 }

20

21 oracle GET_HASH_PACKAGE_IDEALIZATION_PARAMETER() -> Bool {

22 if ((game == 0) or (game == 1)) { /* before idealization */

23 return false;

24 }

25 if ((game == 2) or (game == 3)) { /* after idealization */

26 return true;

27 }

28 abort;

29 /* This should never happen and we put it here to make "function" total */

30 return false;

31 }

32

33 oracle GET_KEY_PACKAGE_IDEALIZATION_PARAMETER(n: Integer, l: Integer) -> Bool {

34 is_dh <- invoke IS_DH_KEY(n);

35 is_psk <- invoke IS_PSK(n);

36 if is_dh {

37 return false;

38 }

39 if ((game == 0) or (game == 1)) { /* before idealization */

40 if is_psk {

41 if (l == 0) {

42 return true;

43 }

44 return false;

45 }

46 return false;

47 }

48 if ((game == 2) or (game == 3)) { /* after idealization */

117

49 return true;

50 }

51 abort;

52 /* This should never happen and we put it here to make "function" total */

53 return false;

54 }

55

56 oracle GET_XTR_PACKAGE_IDEALIZATION_PARAMETER(n: Integer, l: Integer) -> Bool {

57 if ((game == 0) or (game == 1)) { /* before idealization */

58 return false;

59 }

60 if ((game == 2) or (game == 3)) { /* after idealization */

61 is_hs <- invoke IS_HANDSHAKE_SECRET(n);

62 if is_hs {

63 return true;

64 }

65 return false;

66 }

67 abort;

68 /* This should never happen and we put it here to make "function" total */

69 return false;

70 }

71

72 oracle IS_INFINITY_MAPPING(mapping: Integer) -> Bool {

73 if (mapping == 2) {

74 return true;

75 }

76 return false;

77 }

78

79 oracle IS_1_MAPPING(mapping: Integer) -> Bool {

80 if (mapping == 1) {

81 return true;

82 }

83 return false;

84 }

85

86 oracle IS_A_PATTERN(pattern: Integer) -> Bool {

87 if (pattern == 1) {

88 return true;

89 }

90 return false;

91 }

92

93 oracle IS_D_PATTERN(pattern: Integer) -> Bool {

94 if (pattern == 2) {

95 return true;

96 }

97 return false;

98 }

99

100 oracle IS_F_PATTERN(pattern: Integer) -> Bool {

101 if (pattern == 3) {

102 return true;

118

103 }

104 return false;

105 }

106

107 oracle GET_LOG_PACKAGE_PARAMETERS(n: Integer) -> (Integer, Integer) {

108 is_dh <- invoke IS_DH_KEY(n);

109 is_psk <- invoke IS_PSK(n);

110 is_internal <- invoke IS_INTERNAL_KEY(n);

111 is_output <- invoke IS_OUTPUT_KEY(n);

112 if (not is_dh and not is_psk and not is_internal and not is_output) {

113 abort;

114 }

115 (pattern, mapping) <- parse log_package_parameters(game, is_dh, is_psk,

is_internal, is_output);

116 return (pattern, mapping);

117 }

118 }

Listing 5: Package Parameters

1 ; DH (Gks0) = Z

2

3 (assert

4 (=

5 (<<func-log_package_parameters>> 0 true false false false) ; Gks0 is 0, is_dh =

true, is_psk = is_internal = is_output = false

6 (mk-tuple2 0 0) ; pattern = 0 (Z) and mapping = 0

7)

8)

9

10 ; DH (Gks0Map) = Zinf

11

12 (assert

13 (=

14 (<<func-log_package_parameters>> 1 true false false false) ; Gks0Map is 1, is_dh

= true, is_psk = is_internal = is_output = false

15 (mk-tuple2 0 2) ; pattern = 0 (Z) and mapping = infinity

16)

17)

18

19 ; PSK (Gks0) = A

20

21 (assert

22 (=

23 (<<func-log_package_parameters>> 0 false true false false) ; Gks0 is 0, is_dh =

false, is_psk = true, is_internal = is_output = false

24 (mk-tuple2 1 0) ; pattern = 1 (A) and mapping = 0

25)

26)

27

28 ; PSK (Gks0Map) = A1

29

30 (assert

31 (=

119

32 (<<func-log_package_parameters>> 1 false true false false) ; Gks0Map is 1, is_dh

= false, is_psk = true, is_internal = is_output = false

33 (mk-tuple2 1 1) ; pattern = 1 (A) and mapping = 1

34)

35)

36

37 ; Internal keys (Gks0) = Z

38

39 (assert

40 (=

41 (<<func-log_package_parameters>> 0 false false true false) ; Gks0 is 0, is_dh =

false, is_psk = false, is_internal = true, is_output = false

42 (mk-tuple2 0 0) ; pattern = 0 (Z) and mapping = 0

43)

44)

45

46 ; Internal keys (Gks0Map) = Z

47

48 (assert

49 (=

50 (<<func-log_package_parameters>> 1 false false true false) ; Gks0Map is 1, is_dh

= false, is_psk = false, is_internal = true, is_output = false

51 (mk-tuple2 0 0) ; pattern = 0 (Z) and mapping = 0

52)

53)

54

55 ; Output keys (Gks0) = Z

56

57 (assert

58 (=

59 (<<func-log_package_parameters>> 0 false false false true) ; Gks0 is 0, is_dh =

false, is_psk = false, is_internal = false, is_output = true

60 (mk-tuple2 0 0) ; pattern = 0 (Z) and mapping = 0

61)

62)

63

64 ; Output keys (Gks0Map) = Z

65

66 (assert

67 (=

68 (<<func-log_package_parameters>> 1 false false false true) ; Gks0Map is 1, is_dh

= false, is_psk = false, is_internal = false, is_output = true

69 (mk-tuple2 0 0) ; pattern = 0 (Z) and mapping = 0

70)

71)

Listing 6: Log package parameters abstarct function definition

Recall that in Gks0 the adversary was given access directly to the output key
packages Key0

𝑛∈𝑂∗,ℓ and the application PSKs key package Key1
psk,0. Since all key

packages (including NKey, 0salt, and 0ikm) are collapsed into one Key package, we
can not give direct access to the package setter and getter. Instead we proxy these calls
to the package Key through ExternalPskSetter and OutputKeyGetter to ensure only

120

application PSKs are set and output keys are retrieved. Listing 7 shows the code of
packages ExternalPskSetter and OutputKeyGetter in SSBee.

1 package OutputKeyGetter {

2 import oracles {

3 GET(n: Integer, l: Integer, h: Bits(*)) -> (Bits(*), Bool),

4 IS_OUTPUT_KEY(n: Integer) -> Bool,

5 }

6

7 oracle GET(n: Integer, l: Integer, h: Bits(*)) -> (Bits(*), Bool) {

8 is_output_key <- invoke IS_OUTPUT_KEY(n);

9 if not is_output_key {

10 abort;

11 }

12 t <- invoke GET(n, l, h);

13 return t;

14 }

15 }

16 package ExternalPskSetter {

17 import oracles {

18 SET(n: Integer, l: Integer, h: Bits(*), hon: Bool, k: Bits(*)) -> Bits(*),

19 GET_PSK_NAME() -> Integer,

20 }

21

22 oracle SET(h: Bits(*), hon: Bool, k: Bits(*)) -> Bits(*) {

23 psk <- invoke GET_PSK_NAME();

24 t <- invoke SET(psk, 0, h, hon, k);

25 return t;

26 }

27 }

Listing 7: Code of packages ExternalPskSetter and OutputKeyGetter in SSBee

Notice that oracles GET and SET of the key package pkg_Key receives name and level in
addition to their other arguments. We use integers to encode names, although SSBee
supports strings but it does not have support for string literals yet which makes handle
construction and comparison difficult. We use Bits(*) for handles. One can think of it
as the bit encoding of the handle data structure. As we will see in the code of packages,
we define abstract functions to construct DH, extract and expand handles. Moreover,
abstract functions can be used to retrieve various fields from the handles such as DH
shares, parent handles, names, transcript, and handle types. Abstract functions can
also be used for handle level computation. The same idea can be used for any data
structure that is not yet supported by SSBee. With respect to encodings, bitstrings
of arbitrary lengths can be roughly seen as a flexible object type in programming
languages that can resemble any data structure. Data structure operations can then be
defined as abstract functions and appropriate theory to express the properties. We will
see how we state properties about these types. We have also used Bits(*) for tagged
keys. Although tagged keys can be encoded as tuples of raw keys (Bits(*)) and an
algorithm tag (Maybe(Integer) because DH and 0salt keys have null algorithm tags), we
have chosen to hide the structure of key behind bitstring. This requires using abstract
functions to extract the algorithm tag but does not proliferate packages and SMT-LIB

121

code with unnecessary details.
Observe that the stateless package Names is used to avoid hardcoded magic integers

for the key names all around the project. Moreover, it provides other oracles such as
PARENTS that implements the function PrntN from the Section 3.2 and return the parent
key names of the given key name. Similarly, the stateless package Labels expose one
oracle oracle LABEL(n: Integer, r: Bool) -> Integer that implements the function Labels.
Unlike the security model in the Section 3.2 where 𝑟 ∈ {res, ext,⊥}, 𝑟 is boolean
such that 𝑟 = false corresponds to ext and 𝑟 = true corresponds to res. The oracle
LABEL ignores 𝑟 for 𝑛 ≠ bind as it does not affect those key computations.

We have separated the state of the Map package (i.e. the mapping table) into a
separate package MapTable exposing getters and setters to access the mapping table
without additional logic. This is very useful for translating games GksMapXpd and
Gks1(S) while reusing the code of package Map. Recall that the the only difference
of the packages Map, MapXpd, and MapXpdRemap was the code of oracles XPD𝑛∈𝑂∗,ℓ
which derived the output keys. Therefore, we only translate the new code of oracles
XPD𝑛∈𝑂∗,ℓ in packages MapXpd and MapXpdRemap into packages MapXpd and MapXpdRemap in
SSBee while forwarding other calls to the package Map. As a result, the mapping table
needs to be shares between Map and MapXpd or MapXpdRemap. Although we do not verify
Lemma C.5 of [BDLE+21] in this thesis, we have translated the games GksMapXpd

and Gks1(S) in our SSBee project. Thus, we refer the reader to the code repository
[Raj25b] and encourage them to check the diagrams for compositions GksMapXpd and
Gks1.

4.1.2 Key package

We now explain the code of collapsed packages Key and Log. Listing 8 shows the code
of package Key in SSBee.

1 package Key {

2 params {

3 handle_alg: fn Bits(*) -> Integer, /* returns the algorithm identifier of the

given handle */

4 key_alg: fn Bits(*) -> Integer, /* returns the algorithm identifier of the given

key */

5 tag: fn Integer, Bits(*) -> Bits(*), /* tags the given key with the given

algorithm identifier */

6 untag: fn Bits(*) -> Bits(*), /* untags the given key and returns a raw key */

7 name: fn Bits(*) -> Integer, /* returns the name of the given handle */

8 level: fn Bits(*) -> Maybe(Integer), /* returns the level of the given handle */

9 zeros: fn Integer -> Bits(*), /* returns an all zeros bitstring of the given

length */

10 len_key: fn Bits(*) -> Integer /* returns the length of the given key */

11 }

12

13 state {

14 K: Table((Integer, Integer, Bits(*)), (Bits(*), Bool)) /* maps (name, level,

handle) to (key, honesty bit) */

15 }

16

122

17 import oracles {

18 GET_KEY_PACKAGE_IDEALIZATION_PARAMETER(n: Integer, l: Integer) -> Bool,

19 SAMPLE(n: Integer) -> Bits(*),

20 UNQ(n: Integer, h: Bits(*), hon: Bool, k: Bits(*)) -> Bits(*),

21 Q(n: Integer, h: Bits(*)) -> Maybe(Bits(*)),

22 IS_DH_KEY(n: Integer) -> Bool,

23 IS_PSK(n: Integer) -> Bool,

24 IS_0salt(n: Integer) -> Bool,

25 IS_0ikm(n: Integer) -> Bool,

26 IS_0salt_HANDLE(h: Bits(*)) -> Bool,

27 IS_0ikm_HANDLE(h: Bits(*)) -> Bool,

28 IS_noPSK_HANDLE(h: Bits(*)) -> Bool,

29 IS_noDH_HANDLE(h: Bits(*)) -> Bool,

30 IS_HASH_ALGORITHM_SUPPORTED(alg: Integer) -> Bool,

31 GET_HASH_ALGORITHM_LENGTH(alg: Integer) -> Integer,

32 }

33

34 oracle SET(n: Integer, l: Integer, h: Bits(*), hon: Bool, ks: Bits(*)) -> Bits(*) {

35 assert (name(h) == n);

36 is_dh_key <- invoke IS_DH_KEY(n);

37 if not is_dh_key {

38 assert (Unwrap(level(h)) == l);

39 h_alg <- handle_alg(h);

40 is_hash_alg_supported <- invoke IS_HASH_ALGORITHM_SUPPORTED(h_alg);

41 assert is_hash_alg_supported;

42 assert (key_alg(ks) == h_alg);

43 k <- untag(ks);

44 len_h <- invoke GET_HASH_ALGORITHM_LENGTH(h_alg);

45 assert (len_h == len_key(k));

46 b <- invoke GET_KEY_PACKAGE_IDEALIZATION_PARAMETER(n, l);

47 if b {

48 if hon {

49 k <- invoke SAMPLE(len_h);

50 }

51 }

52 } else {

53 assert (level(h) == None);

54 k <- ks;

55 }

56 q_h <- invoke Q(n, h);

57 if (q_h != None as Bits(*)) {

58 return Unwrap(q_h);

59 }

60 unq_h <- invoke UNQ(n, h, hon, k);

61 if (h != unq_h) {

62 return unq_h;

63 }

64 if is_dh_key {

65 K[(n, 0, h)] <- Some((k, hon));

66 } else {

67 K[(n, l, h)] <- Some((k, hon));

68 }

69 return h;

70 }

123

71

72 oracle GET(n: Integer, l: Integer, h: Bits(*)) -> (Bits(*), Bool) {

73 h_alg <- handle_alg(h);

74 len_h <- invoke GET_HASH_ALGORITHM_LENGTH(h_alg);

75 is_dh_key <- invoke IS_DH_KEY(n);

76 if is_dh_key {

77 is_noDH_handle <- invoke IS_noDH_HANDLE(h);

78 if is_noDH_handle {

79 return (tag(h_alg, zeros(len_h)), false);

80 }

81 assert (K[(n, 0, h)] != None as (Bits(*), Bool));

82 (ks, hon) <- parse Unwrap(K[(n, 0, h)]);

83 k <- tag(h_alg, ks);

84 return (k, hon);

85 }

86 is_0salt <- invoke IS_0salt(n);

87 if is_0salt {

88 is_0salt_handle <- invoke IS_0salt_HANDLE(h);

89 assert is_0salt_handle;

90 ks <- zeros(1);

91 k <- tag(h_alg, ks);

92 return (k, false);

93 }

94 is_0ikm <- invoke IS_0ikm(n);

95 if is_0ikm {

96 is_0ikm_handle <- invoke IS_0ikm_HANDLE(h);

97 assert is_0ikm_handle;

98 ks <- zeros(len_h);

99 k <- tag(h_alg, ks);

100 return (k, false);

101 }

102 assert (K[(n, l, h)] != None as (Bits(*), Bool));

103 (ks, hon) <- parse Unwrap(K[(n, l, h)]);

104 k <- tag(h_alg, ks);

105 return (k, hon);

106 }

107 }

Listing 8: Package Key

Notice that packages NKey𝑛∈{dh,0salt,0ikm} and Key𝑏
𝑛,ℓ

all are collapsed to this package.
Observe that non-leveled key tables 𝐾dh storing DH secrets are stored in level zero.
Recall that DH handles do not have levels and we also consider their levels to be null.
However, storing DH secrets in level zero does not introduce undesired effects as the
level is hidden by the adversary. That is, in both oracle SET and GET, we set and retrieve
DH secrets from level zero and the given level argument is ignored. We use abstract
functions to tag and untag keys as well as retrieving algorithm tag of a tagged key
(key_alg). The abstract function zeroes returns an all zero string of the given length.
One can use a similar approach to use string literals in one’s code, i.e. using the
output value of an abstract function on specific input(s). An important difference of
this implementation with the pseudocode of the package Key𝑏

𝑛,ℓ
is the new assertion in

line 41 about whether the hash algorithm specified in the handle is supported. The

124

assertion should not fail when a key is set by the key derivation function oracles as the
algorithm tag of the new handle and key is inherited from the parents. However, the
assertion may fail when the adversary sets an honest or dishonest application PSK
with an unsupported hash algorithm. BDEFKK delay this abort to the point when
the hash algorithm tag is checked by the agile functions xtr and xpd to derive a new
key using hmacalg. In such a situation, the game abort is implicit because simply
the underlying hash function hash-alg called by hmacalg is undefined. We make this
assertion explicit and bring it upfront to the key package. As a result, it is ensured that
all keys are tagged with a supported hash function and the agile functions xtr and xpd
are abort-free and can be viewed as mathematical functions. This assertion is also
useful when the a new key is sampled by invocation of oracle SAMPLE of the package
Sample. Listing 9 shows the code of the package.

1 package Sample {

2 params {

3 cast256: fn Bits(256) -> Bits(*),

4 cast384: fn Bits(384) -> Bits(*),

5 cast512: fn Bits(512) -> Bits(*),

6 default: fn Integer -> Bits(*),

7 }

8

9 oracle SAMPLE(n: Integer) -> Bits(*) {

10 if (n == 256) {

11 k256 <-$ Bits(256);

12 return cast256(k256);

13 }

14 if (n == 384) {

15 k384 <-$ Bits(384);

16 return cast384(k384);

17 }

18 if (n == 512) {

19 k512 <-$ Bits(512);

20 return cast512(k512);

21 }

22 abort;

23 /* This should never happen */

24 return default(0);

25 }

26 }

Listing 9: Package Sample

Since SSBee does not support type casting, we use an abstract function to convert
a value of type Bits(256) to Bits(*). Notice how the abstract function default(0) is used
to return a fixed literal for the default case. Due to the check for a supported hash
algorithm before sampling, we expect that the default case does not happen.

As a final note, the collapsed package Key should cover the semantics of the package
NKey𝑛. Observe that all-zero values are returned for the keys 0salt and 0ikm as well as
for the handles noPSK and noDH. However, the oracle SET does not abort when an
all-zero DH secret is about to be set. In order to reduce the complexities of this package,
we move this assertion to the DH package. This does not change the semantics for

125

the code equivalence but is not enough when keys are set directly by the adversary in
the package NKeydh. Looking back to Section 3.3, SETdh oracle is only exposed to the
adversary in the modular assumption security games Gxtr2𝑏hs,ℓ. Nevertheless, one can
simply move the assertion to the key package in a code equivalence game hop before
reducing to the assumption.

4.1.3 Log package

We now explain how the packages Log𝑃,𝑚𝑎𝑝𝑛 are translated to SSBee. Listing 10 shows
the code of the package Log.

1 package Log {

2 params {

3 /* pattern: Integer, /* pattern see README (shortly; Z: 0, A: 1, D: 2, F: 3) */

4 /* mapping: Integer, /* mapping see README (shortly; 0: 0, 1: 1, inf: 2) */

5 level: fn Bits(*) -> Maybe(Integer) /* returns the level of the given handle */

6 }

7

8 state {

9 Log: Table((Integer, Bits(*)), (Bits(*), Bool, Bits(*))), /* maps (name, handle)

to (mapped handle, honesty bit, key) */

10 Seen: Table((Integer, Bits(*)), Bool), /* indicates whether the (name, key) was

assigned before */

11 LogInverseDishonest: Table((Integer, Bits(*)), Bits(*)), /* maps (name, key) to

first dishonest handle */

12 LogInverseDishonestLevelZero: Table(Bits(*), Bits(*)), /* maps psk key to first

dishonest handle in level zero */

13 LogInverseDishonestLevelNonZero: Table(Bits(*), Bits(*)), /* maps psk key to

first dishonest handle in nonzero level */

14 J: Table(Bits(*), Bool) /* indicates whether the key was mapped before */

15 }

16

17 import oracles {

18 GET_LOG_PACKAGE_PARAMETERS(n: Integer) -> (Integer, Integer),

19 IS_INFINITY_MAPPING(mapping: Integer) -> Bool,

20 IS_1_MAPPING(mapping: Integer) -> Bool,

21 IS_A_PATTERN(pattern: Integer) -> Bool,

22 IS_D_PATTERN(pattern: Integer) -> Bool,

23 IS_F_PATTERN(pattern: Integer) -> Bool,

24 IS_PSK(n: Integer) -> Bool,

25 }

26

27 oracle UNQ(n: Integer, h: Bits(*), hon: Bool, k: Bits(*)) -> Bits(*) {

28 parameters <- invoke GET_LOG_PACKAGE_PARAMETERS(n);

29 (pattern, mapping) <- parse parameters;

30

31 /* mapping */

32 is_infinity <- invoke IS_INFINITY_MAPPING(mapping);

33 if is_infinity {

34 if not hon {

35 if (LogInverseDishonest[(n, k)] != None as Bits(*)) {

36 hp <- Unwrap(LogInverseDishonest[(n, k)]);

37 Log[(n, h)] <- Some((hp, hon, k));

126

38 return hp;

39 }

40 }

41 }

42

43 is_1_mapping <- invoke IS_1_MAPPING(mapping);

44 if is_1_mapping {

45 if not hon {

46 if (J[k] != Some(true)) {

47 r <- Unwrap(level(h));

48 if (r == 0) {

49 if (LogInverseDishonestLevelNonZero[k] != None as Bits(*)) {

50 hp <- Unwrap(LogInverseDishonestLevelNonZero[k]);

51 LogInverseDishonestLevelZero[k] <- Some(h);

52 Log[(n, h)] <- Some((hp, hon, k));

53 J[k] <- Some(true);

54 return hp;

55 }

56 } else {

57 if (LogInverseDishonestLevelZero[k] != None as Bits(*)) {

58 hp <- Unwrap(LogInverseDishonestLevelZero[k]);

59 LogInverseDishonestLevelNonZero[k] <- Some(h);

60 Log[(n, h)] <- Some((hp, hon, k));

61 J[k] <- Some(true);

62 return hp;

63 }

64 }

65 }

66 }

67 }

68

69 /* pattern */

70 is_A_pattern <- invoke IS_A_PATTERN(pattern);

71 if is_A_pattern {

72 r <- Unwrap(level(h));

73 if ((r == 0) and not hon) {

74 if (LogInverseDishonestLevelZero[k] != None as Bits(*)) {

75 abort;

76 }

77 }

78 }

79

80 is_D_pattern <- invoke IS_D_PATTERN(pattern);

81 if is_D_pattern {

82 if not hon {

83 if (LogInverseDishonest[(n, k)] != None as Bits(*)) {

84 abort;

85 }

86 }

87 }

88

89 is_F_pattern <- invoke IS_F_PATTERN(pattern);

90 if is_F_pattern {

91 if (Seen[(n, k)] != None as Bool) {

127

92 abort;

93 }

94 }

95

96 Log[(n, h)] <- Some((h, hon, k));

97 Seen[(n, k)] <- Some(true);

98 if not hon {

99 LogInverseDishonest[(n, k)] <- Some(h);

100 is_psk <- invoke IS_PSK(n);

101 if is_psk {

102 r <- Unwrap(level(h));

103 if (r == 0) {

104 LogInverseDishonestLevelZero[k] <- Some(h);

105 } else {

106 LogInverseDishonestLevelNonZero[k] <- Some(h);

107 }

108 }

109 }

110 return h;

111 }

112

113 oracle Q(n: Integer, h: Bits(*)) -> Maybe(Bits(*)) {

114 if (Log[(n, h)] == None) {

115 return None;

116 }

117 (hp, hon, k) <- parse Unwrap(Log[(n, h)]);

118 return Some(hp);

119 }

120 }

Listing 10: Package Log

Observe how the package Log retrieves its parameters from the package Parameters

via the oracle GET_LOG_PACKAGE_PARAMETERS(n).
The translation of package Log is unique because there is no possible direct

translation from the pseudocode to the SSBee language. Firstly, it is not possible to use
an existential quantifier in the code of packages in SSBee. Secondly, SSBee does not
support iteration control flow statements (i.e. loops). The oracle UNQ of the package
Log

𝑃,𝑚𝑎𝑝
𝑛 searches the table Log𝑛 for an entry with specific conditions. Since SSBee

does not support loops, we can not translate the table lookup with a lookup loop.
However, we mentioned that the existential quantifier is essentially an epsilon operator
in Hilbert’s epsilon calculus [AZ24]. This intuition leads to a translation of the table
lookup as a function that given a table and a value returns an entry with specific
conditions on the value or returns ⊥ when no such entry exists. We have indeed used
such an approach in verification of Lemma 5.20 in Section 5 by replacing the epsilon
operator with an abstract function. However, there is an inherent nondeterminisim for
the value returned by an epsilon operator while an abstract function is a deterministic
mathematical function. If multiple entries exist in the table that satisfy the condition,
an epsilon operator may return any of them but an abstract function shall return one of
them deterministically. If the table lookup imposes additional properties on the order
of search, then this order needs to be taken into account for the output of the abstract

128

function. Fortunately, order is not important in the table lookups of the Log
𝑃,𝑚𝑎𝑝
𝑛

package and any entry can be chosen with the mentioned properties. Although we
believe this translation approach creates more resemblance with the pseudocode of
Log

𝑃,𝑚𝑎𝑝
𝑛 package and possibly and easier translation, we have chosen another approach

for the translation for this case. The first reason is the timing. We discovered the
epsilon operator approach can be useful for lookup table translation only after we had
generated the code of package Log in SSBee and proved properties about it. The second
reason is that we speculate it might be more heavy for the SMT solver as we need
existential quantifiers for the case when multiple entries exist. We have experienced
that universal and existential quantifiers have significantly contributed to the unknown
responses we get from the SMT solver. Thus, we leave translation of the Log

𝑃,𝑚𝑎𝑝
𝑛

package with an epsilon operator implemented as an abstract function to a future work.
The other approach is to use inverse tables. This approach only works for the table

lookups that given 𝑘 , we are searching for an index ℎ in the table 𝑇 such that 𝑇 [ℎ] = 𝑘
or 𝑇 [ℎ] = (𝑘, . . .). The idea is to store another table 𝑇−1 that maps values 𝑘 to indices
ℎ. Since the table 𝑇 is not necessarily an injective mapping, 𝑇−1 is not an inverse
mapping. Depending on how 𝑇−1 is set, we have different guarantees about the index
ℎ = 𝑇−1 [𝑘]. Nevertheless, we abuse the notation of inverse mapping to emphasize
the swap of range and domain more importantly for the following property: for all 𝑘 ,
if 𝑇−1 [𝑘] ≠ ⊥, then 𝑇 [𝑇−1 [𝑘]] = (𝑘, . . .). One might also need that if 𝑇−1 [𝑘] = ⊥,
then there does not exist an index ℎ such that 𝑇 [ℎ] contains 𝑘 .

Concretely, in the package Log, we perform table lookups for all pattern parameters
except 𝑃 = 𝑍 and all mapping parameters except 𝑚𝑎𝑝 = 0. For the infinity mapping
(𝑚𝑎𝑝 = ∞), given a handle ℎ, honesty bit hon, and key 𝑘 , if ℎ is dishonest (hon = false),
we search the table Log for any handle ℎ′ such that Log[ℎ′] = (ℎ′, false, 𝑘). Namely,
(1) ℎ′ is mapped to handle ℎ′, (2) ℎ′ is dishonest, and (3) ℎ′ is mapped to key 𝑘 .
From Figure 18, recall that the mapping condition is 𝑃𝑚𝑎𝑝 = hon = hon′ = false;
however, we can check hon = false upfront (line 34) before the table lookup as it does
not concern the table. We introduce the table LogInverseDishonest that maps a key 𝑘
to handle ℎ′ if Log[ℎ′] = (ℎ′, false, 𝑘). We indeed prove the expected property Log[

LogInverseDishonest[k]] = (LogInverseDishonest[k], false, k) as an invariant state relation
that is preserved across all queries. To achieve this property, we update the table
LogInverseDishonest whenever we update the table Log with required conditions. Table
Log is set at two points: (1) at line 37 when an infinity mapping triggers and (2) at line
96 when no mapping or pattern triggers. Notice that in the first case table Log is not set
with an entry of the form Log[ℎ] = (ℎ, _, _), i.e. ℎ is not mapped to itself. That is
because oracle UNQ is called by the oracle SET of the package Key which checks whether
the handle ℎ exists in the Log table or not via the oracle call Q(h). Therefore, if hp = h in
these two cases, due to the property Log[LogInverseDishonest[k]] = (LogInverseDishonest

[k], false, k), handle h should already exist in the table, which is a contradiction.
However, at line 96, table Log is always set with Log[ℎ] = (ℎ, _, 𝑘) for the given 𝑘 .
As a result, it only remains to check hon = false at line 98 and and only then the
table LogInverseDishonest can be updated at line 99. Finally, at line 35, we lookup the
Log table by checking whether LogInverseDishonest[k] is not none. Since all packages
Log

𝑃,𝑚𝑎𝑝
𝑛 for all key names 𝑛 are collapsed to one package Log, indices of all tables also

129

include the key name. Since the 𝐷 pattern also has the same table lookup condition,
we can reuse the table LogInverseDishonest.

The same idea is used to for the mapping 𝑚𝑎𝑝 = 1 and pattern 𝑃 = 𝐴. Recall from
Figure 18 that for𝑚𝑎𝑝 = 1, given a handle ℎ, honesty bit hon, and key 𝑘 , if hon = false,
we search the Log table for an index ℎ′ such that (1) Log[ℎ′] = (ℎ′, false, 𝑘), (2)
{level(ℎ), level(ℎ′)} = {0, ℓ} for ℓ ≠ 0, and (3) 𝐽 [𝑘] = false, i.e. ℎ′ is a dishonest
handle mapped to ℎ′ and key 𝑘 and exactly one of ℎ and ℎ′ are in level zero. In
other words, if level(ℎ) = 0, we look for an index handle ℎ′ in a higher level but
if level(ℎ) > 0, we look for an index in level zero. Translating to SSBee, we first
check hon = false at line 45 and ensure 𝐽 [𝑘] ≠ true at line 46. The reason for
checking 𝐽 [𝑘] ≠ true instead of 𝐽 [𝑘] = false is that table entries can be either null
or contain some value. Moreover, all table entries are null in the beginning. Since
we never set false in the table, there are essentially two possible values for 𝐽 [𝑘]: None

or Some(true). If we wanted to check 𝐽 [𝑘] = false, we would need to initialize the
table with false. Finally, we check the level 𝑟 of the handle ℎ and, based on 𝑟 , lookup
in the tables LogInverseDishonestLevelNonZero or LogInverseDishonestLevelZero respectively
for a dishonest handle ℎ′ with non zero level 𝑟′ > 0 or a dishonest handle ℎ′ at
level zero. Formally, these tables map key 𝑘 to handle ℎ′ if Log[ℎ′] = (ℎ′′, false, 𝑘)
and level(ℎ′) = 0 or level(ℎ′) > 0. Notice that ℎ′′ is not necessary the same as
ℎ and this is intended. We will shortly explain why this is the case. We again
prove the following expected properties: Log[LogInverseDishonestLevelZero[k]] = (_,

false, k) and Log[LogInverseDishonestLevelNonZero[k]] = (_, false, k) as an invariant state
relation. We also show that level(LogInverseDishonestLevelZero[k]) = 0 while level(

LogInverseDishonestLevelNonZero[k]) != 0. Accordingly, we have to update these two
tables when we update the Log table at lines 52, 60, and 96. Similar to the infinity
mapping case, these tables are updated in lines 104 and 106 depending on the level
of ℎ. Unlike the infinity mapping, these tables are also updated when a mapping
occurs. Similar to the infinity mapping, it can be even argued that hp != h and
intuitively we should not update the tables. Looking back, we do not expect the
tables LogInverseDishonestLevelNonZero or LogInverseDishonestLevelZero to map 𝑘 to handle
ℎ′ such that Log[ℎ′] = (ℎ′′, false, 𝑘) where ℎ′′ = ℎ′ but rather the honesty bit, key, and
level of ℎ′ are important. Looking ahead, this property is very useful when proving
invariance of the following state relation:

LogInverseDishonestLevelZero[𝑘] ≠ ⊥ ∧ LogInverseDishonestLevelNonZero[𝑘] ≠ ⊥
=⇒ 𝐽 [𝑘] = true (Invariant-J)

In other words, 𝐽 [𝑘] is an indictor for whether a mapping has occurred. One
can also view this choice of definition for the tables LogInverseDishonestLevelNonZero and
LogInverseDishonestLevelZero in the context of the security model. The mapping pattern
𝑚𝑎𝑝 = 1 is used to map the first time a dishonest resumption PSK collides with
a dishonest application PSK. Hence, before a mapping of key 𝑘 happens, there is
no collision between dishonest application and resumption PSKs. That is, for every
𝑘 not involved in a mapping, either there exists no handle ℎ′ with level zero such
that Log[ℎ′] = (ℎ′, false, 𝑘) or there exists no handle ℎ′ with nonzero level such that

130

Log[ℎ′] = (ℎ′, false, 𝑘). We indeed prove the following as another invariant state
relation:

LogInverseDishonestLevelZero[𝑘] = ⊥ ∧ LogInverseDishonestLevelNonZero[𝑘] ≠ ⊥
=⇒ LogInverseDishonestLevelNonZero[𝑘] = LogInverseDishonest[𝑘]

LogInverseDishonestLevelZero[𝑘] ≠ ⊥ ∧ LogInverseDishonestLevelNonZero[𝑘] = ⊥
=⇒ LogInverseDishonestLevelZero[𝑘] = LogInverseDishonest[𝑘]

Together with Log[LogInverseDishonest[k]] = (LogInverseDishonest[k], false, k), one can
conclude:

LogInverseDishonestLevelZero[𝑘] = ⊥ ∧ LogInverseDishonestLevelNonZero[𝑘] ≠ ⊥
=⇒ Log[LogInverseDishonestLevelNonZero[𝑘]] = (LogInverseDishonestLevelNonZero[𝑘], false, 𝑘)

LogInverseDishonestLevelZero[𝑘] ≠ ⊥ ∧ LogInverseDishonestLevelNonZero[𝑘] = ⊥
=⇒ Log[LogInverseDishonestLevelZero[𝑘]] = (LogInverseDishonestLevelZero[𝑘], false, 𝑘)

Basedon the constrapositive of Invariant-J, one of the entries LogInverseDishonestLevelNonZero
[k] or LogInverseDishonestLevelZero[k] are null before a mapping (i.e. 𝐽 [𝑘] = false).
However, the moment a mapping occurs for a key 𝑘 , say without loss of generality
Log[ℎ] = (ℎ′, false, 𝑘) where level(ℎ) = 0 but level(ℎ′) > 0, there is no handle ℎ
in the table with level level(ℎ) = 0 such that Log[ℎ] = (ℎ, false, 𝑘). Clearly, future
queries of the adversary with the same key 𝑘 might create such an entry as the mapping
happens only once.

In Section 3.2, we mentioned that the Key and Log tables need to be initialized for
the handles noPSK⟨alg⟩. We initialize these tables in the SMT-LIB code as a lemma.
Moreover, we need to initialize the inverse table for the all-zero keys 0len(alg) to map
to the noPSK⟨alg⟩ handles.

Notice the the table LogInverseDishonestLevelZero[k] can be reused for the pattern 𝐴
which searches the table for a collision between level zero dishonest keys.

Finally, we introduce the table Seen for the use of pattern 𝐹. This table records
whether a key has ever been set in the table as the pattern 𝐹 aborts whenever the same
key is about to be set again.

4.1.4 Other packages

We will see the code of some of other packages in the next section but refer the reader
to the repository for the code of all other packages, such as Xtr, Xpd, Map, MapTable, DH,
Hash, and Check. All these packages except Hash have a direct translation from their
pseudocode to SSBee language, although they extensively use abstract functions for
various operations out of the scope of the model. For example, the package DH uses
an abstract function exp: fn Bits(*), Integer -> Bits(*) to raise DH share (Y: Bits(*))
to the power of private exponent (x: Integer) and return the share 𝑌 𝑥 . Interestingly,
we do not even need to state the commutative property of the exponentiation (i.e.
(𝑔𝑥)𝑦 = (𝑔𝑦)𝑥) for the code equivalence proof obligations. We decide not to proliferate
the thesis with the lengthy abstract function declarations.

131

The only exception to direct translation is the package Hash. The oracle HASH(t)

exposed by the ideal package Hash1 performs a table lookup to ensure no other transcript
𝑡′ hashes to the same digest of transcript 𝑡. As a result, this captures the collision
resistance of the underlying hash function. We have translated this package with the
exactly same technique of an inverse table mapping hash digests to the transcripts.
Since we only focus at the code equivalence of Lemma C.2 of [BDLE+21] and the
package Hash is not idealized in the games Gks0 and Gks0Map, we refrain from further
discussion and refer the reader to the repository. Moreover, the oracle HASH(t) is a total
function and does not abort in the real package Hash0. Thus, we replace the call to
HASH(t) with an abstract function hash1(t). However, it is noteworthy that this is not a
sound translation when verifying Lemma C.5 of [BDLE+21] where the package Hash0

is idealized and the oracle HASH(t) can abort.

4.2 Towards verification of Lemma C.2

We now proceed to the code equivalence proof in SSBee. Listing 11 shows the high
level structure of the proof file proof-lemma-c2.ssp.

1 proof LemmaC2 {

2 ...

3 instance game_Gks0 = Gks0 {

4 params {

5 ...

6 }

7 }

8 instance game_Gks0Map = Gks0Map {

9 params {

10 ...

11 }

12 }

13 gamehops {

14 equivalence game_Gks0 game_Gks0Map {

15 DHGEN: {

16 invariant: [

17 ./proofs/abstract-functions.smt2

18 ./proofs/invariants.smt2

19 ./proofs/oracles/DHGEN.smt2

20]

21

22 lemmas {

23 invariant: [no-abort]

24 same-output: [no-abort]

25 equal-aborts: []

26 }

27 }

28 DHEXP: {

29 invariant: [

30 ./proofs/abstract-functions.smt2

31 ./proofs/randomness-mapping.smt2

32 ./proofs/invariants.smt2

33 ./proofs/oracles/DHEXP.smt2

132

34]

35

36 lemmas {

37 same-output: [no-abort]

38 equal-aborts: []

39 invariant: [no-abort]

40 }

41 }

42 SET: {

43 invariant: [

44 ./proofs/abstract-functions.smt2

45 ./proofs/randomness-mapping.smt2

46 ./proofs/invariants.smt2

47 ./proofs/oracles/SET.smt2

48]

49

50 lemmas {

51 all-invariants-after: [no-abort, all-invariants-before, lemma-rand-is

-eq]

52 invariant: [no-abort, lemma-rand-is-eq]

53 same-output: [no-abort]

54 equal-aborts: []

55 }

56 }

57 GET: {

58 invariant: [

59 ./proofs/abstract-functions.smt2

60 ./proofs/randomness-mapping.smt2

61 ./proofs/invariants.smt2

62 ./proofs/oracles/GET.smt2

63]

64

65 lemmas {

66 lemma-left-output: [no-abort, lemma-name-and-level-of-handle]

67 lemma-right-output: [no-abort, lemma-name-and-level-of-handle]

68 same-output: [no-abort, lemma-left-output, lemma-right-output, lemma-

name-and-level-of-handle, lemma-alg-is-preserved]

69 }

70 }

71 XTR: {

72 invariant: [

73 ./proofs/abstract-functions.smt2

74 ./proofs/randomness-mapping.smt2

75 ./proofs/invariants.smt2

76 ./proofs/oracles/XTR.smt2

77]

78

79 lemmas {

80 same-output: [no-abort, lemma-Gks0-output, lemma-Gks0Map-output]

81 lemma-Gks0Map-output: [no-abort]

82 lemma-Gks0-output: [no-abort]

83 }

84 }

85 XPD: {

133

86 invariant: [

87 ./proofs/abstract-functions.smt2

88 ./proofs/randomness-mapping.smt2

89 ./proofs/invariants.smt2

90 ./proofs/oracles/XPD.smt2

91]

92

93 lemmas {

94 same-output: [no-abort, lemma-Gks0-output, lemma-Gks0Map-output]

95 lemma-Gks0Map-output: [no-abort]

96 lemma-Gks0-output: [no-abort]

97 }

98 }

99 }

100 }

101 }

Listing 11: Proof file proof-lemma-c2.ssp

As we saw in Section 2.5, SSBee relies on Theorem 2.3 and asks the user to provide
state relations and try to prove their invariance as well as same-output and equal-aborts
properties for each of the oracles exposed to the adversary. Games Gks0 and Gks0Map

expose five oracles DHGEN, DHEXP, GET, SET, XTR, and XPD to the adversary. We have managed
to point out all necessary state relations to prove the same-output property of all
oracles. Moreover, for the oracles DHGEN, DHGEN, and SET, we also prove the equal-aborts
property as well as invariance of state relations required for their proof. This leaves
proving invariance of other state relations and the equal-aborts property for the other
three oracles to a future work.

Although SSBee uses the keyword invariant for referring to the list of related SMT-
LIB files, it internally concatenates all of them and include them in its compiled SMT-
LIB output file. Benefitting from this, we have organized our SMT-LIB files as follows:
abstract-functions.smt2 include the definitions of abstract function log_package_parameters

described before and key parents function parents(n); randomness-mapping.smt2 include the
template of all randomness mapping definitions shared by all oracles; invariants.smt2
includes all state relations for the equivalence; {ORACLE}.smt2 includes lemmata and
invariants necessary for proof obligations of each oracle. We now briefly explain the
verification process for some oracles.

4.2.1 Oracle DHEXP

The following listings show the code of oracle DHEXP exposed by the packages DH and
Map.

134

1 package DH {

2 params {

3 exp: fn Bits(*), Integer -> Bits

(*),

4 mk_dh_handle: fn Bits(*), Bits(*)

-> Bits(*),

5 ...

6 }

7 state {

8 E: Table(Bits(*), Integer) /*
maps g^x to x */

9 }

10 import oracles {

11 SET(n: Integer, l: Integer, h:

Bits(*), hon: Bool, ks: Bits(*)) ->

Bits(*),

12 GET_DH_NAME() -> Integer,

13 }

14 ...

15 oracle DHEXP(X: Bits(*), Y: Bits(*))

-> Bits(*) {

16 assert (grp(X) == grp(Y));

17 h <- mk_dh_handle(X, Y);

18 hon_X <- not (E[X] == None);

19 hon_Y <- not (E[Y] == None);

20 assert (hon_X == true);

21 x <- Unwrap(E[X]);

22 k <- exp(Y, x);

23 if (k == zeros(len_key(k))) {

24 abort;

25 }

26 hon <- (hon_X and hon_Y);

27 dh <- invoke GET_DH_NAME();

28 h <- invoke SET(dh, 0, h, hon,

encode_group_member(k));

29 return h;

30 }

31 ...

32 }

1 package Map {

2 params {

3 mk_dh_handle: fn Bits(*), Bits(*)

-> Bits(*),

4 ...

5 }

6 import oracles {

7 GET_DH_NAME() -> Integer,

8 DHEXP(X: Bits(*), Y: Bits(*)) ->

Bits(*),

9 SETMAP(n: Integer, l: Integer,

ext_h: Bits(*), int_h: Bits(*)),

10 ...

11 }

12 ...

13 oracle DHEXP(X: Bits(*), Y: Bits(*))

-> Bits(*) {

14 h <- mk_dh_handle(X, Y);

15 int_h <- invoke DHEXP(X, Y);

16 dh <- invoke GET_DH_NAME();

17 _ <- invoke SETMAP(dh, 0, h,

int_h);

18 return h;

19 }

20 ...

21 }

We usually start with proving the same-output property and then proceed to
equal-aborts and finally prove the invariance of state relations. SSBee tries to prove
the left and right DHEXP oracles return the same output given (1) the same inputs are
passed to the oracles (i.e. DH shares 𝑋 and 𝑌), (2) state relations hold on the states
of the games before the oracle query, (3) oracles consume the randomness strings,
and (4) oracles do not abort. Notice that the only probabilistic oracles are SET and
DHGEN. We can simply define a randomness mapping between the sampling points
in these oracles similar to the randomness mapping of Section 2.5.

We first try to prove the same-output property. Since we assume the oracles do not
abort, the left oracle returns at line 29 while the right oracle returns at line 18. The right
oracle returns the the handle constructed by the abstract function mk_dh_handle(X, Y).
SSBee can also verify this independently when expressed as a standalone lemma

135

lemma-Gks0Map-output:
1 DHEXP: {

2 invariant: [

3 ...

4]

5 lemmas {

6 lemma-Gks0Map-output: [no-abort]

7 lemma-Gks0-output: [no-abort]

8 ...

9 }

10 }

1 (define-fun <relation-lemma-Gks0Map-output-game_Gks0-game_Gks0Map-DHEXP>

2 (

3 (old-state-Gks0 <GameState_Gks0_<$$>>)

4 (old-state-Gks0Map <GameState_Gks0Map_<$$>>)

5 (return-DHEXP-Gks0 <OracleReturn-Gks0-<$$>-DH-<$$>-DHEXP>)

6 (return-DHEXP-Gks0Map <OracleReturn-Gks0Map-<$$>-Map-<$$>-DHEXP>)

7 (X Bits_*)

8 (Y Bits_*)

9)

10 Bool

11 (=

12 (return-value (<oracle-return-Gks0Map-<$$>-Map-<$$>-DHEXP-return-value-or-abort>

return-DHEXP-Gks0Map))

13 (<<func-mk_dh_handle>> X Y)

14)

15)

However, the left oracle return the handle returned by the oracle SET and the
lemma lemma-Gks0-output fails to prove (SMT solver reports unknown):

1 (define-fun <relation-lemma-Gks0-output-game_Gks0-game_Gks0Map-DHEXP>

2 (

3 (old-state-Gks0 <GameState_Gks0_<$$>>)

4 (old-state-Gks0Map <GameState_Gks0Map_<$$>>)

5 (return-DHEXP-Gks0 <OracleReturn-Gks0-<$$>-DH-<$$>-DHEXP>)

6 (return-DHEXP-Gks0Map <OracleReturn-Gks0Map-<$$>-Map-<$$>-DHEXP>)

7 (X Bits_*)

8 (Y Bits_*)

9)

10 Bool

11 (=

12 (return-value (<oracle-return-Gks0-<$$>-DH-<$$>-DHEXP-return-value-or-abort>

return-DHEXP-Gks0))

13 (<<func-mk_dh_handle>> X Y)

14)

15)

Observe that the oracle SET call the oracle Q of the package Log. The Log package
for DH secrets has the parameters (𝑃, 𝑚𝑎𝑝) = (𝑍, 0). Therefore, no mapping or abort
happens and for all DH handles ℎ, if Logleft [ℎ] ≠ ⊥, then Logleft [ℎ] = (ℎ, hon, 𝑘) for
some honesty bit hon and key 𝑘 . BDEFKK refer to this property of the package Log𝑍dh
by invariant 2a (v). Consequently, the same given handle ℎ is returned in all cases by

136

the oracle SET and the same constructed handle mk_dh_handle(X, Y) is retuned to the
adversary. Unfortunately, SSBee (or the SMT solver) does not have this information
when the oracle Q is called and proving same-output fails with unknown from the
SMT solver. We define invariant 2a (v) as a state relation as follows and successfully
prove the same-output property.

1 (define-fun invariant-2a-v

2 (

3 (state-Gks0 <GameState_Gks0_<$$>>)

4 (state-Gks0Map <GameState_Gks0Map_<$$>>)

5)

6 Bool

7 ; n = name(h)

8 ; Invariant (2a) (v) : Log_left[(n, h)] = some(h, hon, k) or none

9 (let

10 (

11 (Log_left (<pkg-state-Log-<$$>-Log> (<game-Gks0-<$$>-pkgstate-pkg_Log> state-

Gks0)))

12)

13 (forall

14 (

15 (h Bits_*)

16)

17 (let

18 (

19 (n (<<func-name>> h))

20)

21 (let

22 (

23 (log_entry (select Log_left (mk-tuple2 n h)))

24)

25 (=>

26 (not ((_ is mk-none) log_entry))

27 (= (el3-1 (maybe-get log_entry)) h)

28)

29)

30)

31)

32)

33)

Although this invariant was recognized and expressed by BDEFKK, they overlooked
its necessity for proving same-output property of the oracle DHEXP, rendering the
importance of the formal verification.

The other proof obligation is equal-aborts. The right oracle queries the DHEXP oracle
of the package DH of the game Gks0Map at line 15. Hence, we should consider a similar
code to the left oracle is executed at that point. Nevertheless, both oracle assert the
shares 𝑋 and 𝑌 belong to the same group (line 12 on left). This assertion passes or
fails on both sides due to equality of inputs passed to the oracles. Line 16 on the
left asserts the share 𝑋 exists in the table. A similar assertion occurs when the right
oracles calls DHEXP at line 15. In order for the assertions to have the same failure status,
we need a state relation for the equality of the exponent tables, i.e. 𝐸left = 𝐸right. The

137

same state relation is necessary to argue the computed keys k = exp(Y, x) are the same
on the left and right to show the abort command at line 24 of the left oracle has the
same failure status as the same command on the right. BDEFKK refers to this state
relation by invariant (1) and it is expressed as follows in the SMT-LIB language:

1 (define-fun invariant-1

2 (

3 (state-Gks0 <GameState_Gks0_<$$>>)

4 (state-Gks0Map <GameState_Gks0Map_<$$>>)

5)

6 Bool

7 ; Invariant (1) : exponent table consistency : E_left = E_right

8 (let

9 (

10 (E_left (<pkg-state-DH-<$$>-E> (<game-Gks0-<$$>-pkgstate-pkg_DH> state-Gks0)

))

11 (E_right (<pkg-state-DH-<$$>-E> (<game-Gks0Map-<$$>-pkgstate-pkg_DH> state-

Gks0Map)))

12)

13 (= E_left E_right)

14)

15)

4.2.2 Oracle SET

We do not go into every details of the verification process but we highlight the
important results and observations from the verification. Firstly, the verification of
oracle SET is important because it points out an important difference of the games
Gks0 and Gks0Map, i.e., the mapping parameters of the packages Log𝐴psk and Log𝐴1

psk. The
adversary can set honest and dishonest application PSKs through this oracle and it is
crucial that the left and right oracles satisfy the equal-aborts property. Essentially, we
need to ensure the addition of mapping does not prevent an abort situation in the right
game. In other words, it should not be possible that the left game aborts because the
given dishonest application PSK handle ℎ collides with another dishonest application
PSK ℎ′ in the Log table while the right game maps ℎ to some dishonest resumption
PSK ℎ′′. This is a contradiction because ℎ′′ and ℎ′ already have a collision (and should
have been mapped to each other) but the mapping happens only once. BDEFKK
express this property of one-time mapping under invariant 2e as follows:

∀𝑘 : (∃ℎ ≠ ℎ′ ∧ level(ℎ) = 0 ∧ level(ℎ′) ≠ 0∧
Logright

psk [ℎ] = (_, 0, 𝑘)

∧ Logright
psk [ℎ

′] = (_, 0, 𝑘))

}︄
⇒ Jpsk [𝑘] = 1

(Invariant-2e)

We avoid the existential quantifier with our tables LogInverseDishonestLevelZero and
LogInverseDishonestLevelNonZero: (cf. equation Invariant-J)

1 (define-fun J-invariants

2 (

138

3 (old-state-KeyLogGks0Map <GameState_KeyLogGks0Map_<$$>>)

4)

5 Bool

6 (let

7 (

8 (J (<pkg-state-Log-<$$>-J> (<game-KeyLogGks0Map-<$$>-pkgstate-pkg_Log> old-

state-KeyLogGks0Map)))

9 (LogInverseDishonestLevelZero (<pkg-state-Log-<$$>-

LogInverseDishonestLevelZero> (<game-KeyLogGks0Map-<$$>-pkgstate-pkg_Log> old-state-

KeyLogGks0Map)))

10 (LogInverseDishonestLevelNonZero (<pkg-state-Log-<$$>-

LogInverseDishonestLevelNonZero> (<game-KeyLogGks0Map-<$$>-pkgstate-pkg_Log> old-

state-KeyLogGks0Map)))

11)

12 (forall

13 (

14 (k Bits_*)

15)

16 (let

17 (

18 (J_k (select J k))

19 (LogInverseDishonestLevelZero_k (select LogInverseDishonestLevelZero

k))

20 (LogInverseDishonestLevelNonZero_k (select

LogInverseDishonestLevelNonZero k))

21)

22 (and

23 ; J = None or some(True)

24 (or

25 ((_ is mk-none) J_k)

26 (= J_k (mk-some true))

27)

28 ; J[k] = None => LogInverseDishonestLevelZero[k] = None or

LogInverseDishonestLevelNonZero[k] = None

29 (=>

30 ((_ is mk-none) J_k)

31 (or

32 ((_ is mk-none) LogInverseDishonestLevelZero_k)

33 ((_ is mk-none) LogInverseDishonestLevelNonZero_k)

34)

35)

36)

37)

38)

39)

40)

In Section 4.1.3, we mentioned that one may need another property from an inverse
table that if 𝑇−1 [𝑘] = ⊥ then no entry with index ℎ exists in the table 𝑇 such that 𝑇 [ℎ]
contains 𝑘 . BDEFKK introduce the state relation invariant (5) to relate the Log tables

139

of the left and right games on application PSK handles.

𝑛 = 𝑖 = dh ∨ (𝑖 = (psk, 0) ∧ 𝑛 = psk) ⇒
(Logleft

𝑛 [ℎ] ≠ ⊥) ⇔ (𝑀
right
𝑖
[ℎ] ≠ ⊥) ⇔ (Logright

𝑛 [ℎ] ≠ ⊥)
Logleft

𝑛 [ℎ] ≠ ⊥ ⇒
𝐿𝑜𝑔left

𝑛 [ℎ] = (ℎ, hon, 𝑘)∧
𝐿𝑜𝑔

right
𝑛 [ℎ] = (𝑀 right

𝑖
[ℎ], hon′, 𝑘′)∧

(hon, 𝑘) = (hon′, 𝑘′) (Invariant-5)

We needa flavourof the inverse table property to relate the tables LogInverseDishonestLevelZero
of the left and right games. We define this state relation as follows:

LogInverseDishonestLevelZeroleft [𝑘] = ⊥ ⇔ LogInverseDishonestLevelZeroright [𝑘] = ⊥

Notice that this property is not necessary if we prove as another state relation that
LogInverseDishonestLevelZero[k] is null if no dishonest level zero handle with the given
key 𝑘 exists in the Log table. Then the property follows from Invariant-5.

BDEFKK have presented a detailed pen-and-paper argument for the same-output
and equal-aborts properties. We refer the reader to their paper for more details.
Moreover, other invariants that are necessary for the verification are expressed in
our code repository. We have successfully verified the equal-aborts and same-output
properties as well as invariance of the required state relations.

4.2.3 Oracles GET, XPD, and XTR

These were the trickiest oracles for verification. We only managed to verify the same-
output property by finding all the necessary invariants. (See the list of lemmata assumed
for the same-output proof goal.) We leave the full verification of these three oracles
to a future work. However, we want to emphasize that among these three oracles,
verification of even the same-output property for oracles XTR and XPD are mysteriously
difficult for the SMT solver, responding with unsat only after a few minutes. Ironically,
when we split the proof goals to ensure what the output of each oracle should be, the
SMT solver takes again a few minutes to prove unsatisfiability. This is not satisfactory
specifically for the right oracle (exposed by the Map package) where the output
is trivially the constructed handles xtr⟨𝑛, ℎ1, ℎ2⟩ or xpd⟨𝑛, 𝑙𝑎𝑏𝑒𝑙, ℎ1, args⟩. Listing
below shows the trivial lemmata lemma-Gks0Map-output that takes a long time to verify.
We speculate that this phenomena happens due to the complexity of other oracle calls
in the body of the oracles XPD and XTR and can be avoided with modular verification
techniques. (See Section 4.4) We leave more investigation for the root of this issue
and applying modular verification technique as a future work.

1 (define-fun <relation-lemma-Gks0Map-output-game_Gks0-game_Gks0Map-XTR>

2 (

3 (old-state-Gks0 <GameState_Gks0_<$$>>)

4 (old-state-Gks0Map <GameState_Gks0Map_<$$>>)

5 (return-XTR-Gks0 <OracleReturn-Gks0-<$$>-Xtr-<$$>-XTR>)

140

6 (return-XTR-Gks0Map <OracleReturn-Gks0Map-<$$>-Map-<$$>-XTR>)

7 (n Int)

8 (l Int)

9 (h1 Bits_*)

10 (h2 Bits_*)

11)

12 Bool

13 (=

14 (return-value (<oracle-return-Gks0Map-<$$>-Map-<$$>-XTR-return-value-or-abort>

return-XTR-Gks0Map))

15 (<<func-mk_xtr_handle>> n h1 h2)

16)

17)

18 (define-fun <relation-lemma-Gks0Map-output-game_Gks0-game_Gks0Map-XPD>

19 (

20 (old-state-Gks0 <GameState_Gks0_<$$>>)

21 (old-state-Gks0Map <GameState_Gks0Map_<$$>>)

22 (return-XPD-Gks0 <OracleReturn-Gks0-<$$>-Check-<$$>-XPD>)

23 (return-XPD-Gks0Map <OracleReturn-Gks0Map-<$$>-Check-<$$>-XPD>)

24 (n Int)

25 (l Int)

26 (h Bits_*)

27 (r Bool)

28 (args Bits_*)

29)

30 Bool

31 (=

32 (return-value (<oracle-return-Gks0Map-<$$>-Check-<$$>-XPD-return-value-or-abort>

return-XPD-Gks0Map))

33 (<<func-mk_xpd_handle>> n (<<func-label1>> n r) h args)

34)

35)

4.2.4 Invariance of state relations

In previous sections we did not discuss proving the invariance of state relations.
Proving the invariance of state relations is indeed the most difficult task for verification
because it requires proving the preservation of the same state relations for every
oracle. In the following, we first present all the invariants introduced by BDEFKK and
mention which invariants we were able to prove. Let idx(ℎ) be equal to name(ℎ) if
name(ℎ) ∈ {0salt, dh, 0ikm} and (name(ℎ), level(ℎ)), otherwise.

(1) exponent table consistency: 𝐸 left = 𝐸 right

∀ℎ, let 𝑖 := idx(ℎ), 𝑛 := name(ℎ):

(2a) 𝐾 andLog: for (K𝑖, Log𝑛) = (Kleft
𝑖
, Logleft

𝑛) and (K𝑖, Log𝑛) = (K
right
𝑖

, Logright
𝑛)

(𝑖) Log𝑛 [ℎ] = ⊥ ⇒ 𝐾𝑖 [ℎ] = ⊥
(𝑖𝑖) Log𝑛 [ℎ] = (ℎ′, ∗, ∗) with ℎ′ ≠ ℎ⇒ 𝐾𝑖 [ℎ] = ⊥

141

(𝑖𝑖𝑖) Log𝑛 [ℎ] = (ℎ′, hon, 𝑘) with ℎ′ ≠ ℎ⇒ Log𝑛 [ℎ′] = (ℎ′, hon, 𝑘)
(𝑖𝑣) Log𝑛 [ℎ] = (ℎ, hon, 𝑘) ⇔ 𝐾𝑖 [ℎ] = (𝑘, hon) ≠ ⊥
(𝑣) Logleft

𝑛 [ℎ] ≠ ⊥ ⇒ Logleft
𝑛 [ℎ] = (ℎ, ∗, ∗)

(𝑣𝑖) Logright
𝑛 [ℎ], 𝑛 ∉ {psk, dh} ≠ ⊥ ⇒ Logright

𝑛 [ℎ] = (ℎ, ∗, ∗)
(𝑣𝑖𝑖) ∀𝑛′ : Log𝑛′ [ℎ] ≠ ⊥ ⇒ name(ℎ) = 𝑛′

(𝑣𝑖𝑖𝑖) Log[ℎ] = (ℎ′, ∗, 𝑘) ⇒ |𝑘 | = len(ℎ) = len(ℎ′) ∧ alg(ℎ) = alg(ℎ′)
(𝑖𝑥) 𝑛 ∈ {0ikm, 0salt, dh} ⇒ (K𝑛 [ℎ] ≠ ⊥ ⇒ level(ℎ) = ⊥)
(𝑥) ∀ℓ : 𝑛 ∉ {0ikm, 0salt, dh} ⇒ (K𝑛,ℓ [ℎ] ≠ ⊥ ⇒ level(ℎ) = ℓ)

(2b) Available keys (mapped-unmapped):

Mright
i [ℎ] = ℎ′ ≠ ⊥ ⇒ Logright

n [ℎ′] = (ℎ′, ∗, ∗)

(2c) Available keys (right-left):

Mright
𝑖
[ℎ] = ℎ′ ≠ ⊥ ⇐⇒ Logleft

𝑛 [ℎ] = (ℎ, ∗, ∗)

(2d)

Mright
𝑖
[ℎ] ≠ ⊥ ⇒

xtr⟨𝑛, ℎ1, ℎ2⟩ = ℎ ∧ idx(ℎ1) = 𝑖1 ∧ idx(ℎ2) = 𝑖2 ⇒
Mright
𝑖1
[ℎ1] ≠ ⊥ ∧Mright

𝑖2
[ℎ2] ≠ ⊥∧

M𝑖 [ℎ] = xtr⟨𝑛,Mright
𝑖1
[ℎ1],Mright

𝑖2
[ℎ2]⟩

xpd⟨𝑛, label, ℎ1, args⟩ = ℎ ∧ idx(ℎ1) = 𝑖1 ∧ 𝑛 ≠ psk⇒
Mright
𝑖1
[ℎ1] ≠ ⊥∧

Mright
𝑖
[ℎ] = xpd⟨𝑛, label,Mright

𝑖1
[ℎ1], args⟩

xpd⟨psk, label, ℎ1, args⟩ = ℎ ∧ idx(ℎ1) = 𝑖1 ⇒
Mright
𝑖1
[ℎ1] ≠ ⊥∧

Logpsk [xpd⟨psk, label,Mright
𝑖1
[ℎ1], args⟩] = (Mright

𝑖
[ℎ], ∗, ∗)

(2e) J-Map:

∀𝑘 : (∃ℎ ≠ ℎ′ ∧ level(ℎ) = 0 ∧ level((ℎ′) ≠ 0∧
Logright

psk [ℎ] = (_, 0, 𝑘)

∧ Logright
psk [ℎ

′] = (_, 0, 𝑘))

}︄
⇒ Jpsk [𝑘] = 1

(3) Mapping keeps name and algs: 𝑀 right
𝑖
[ℎ] ≠ ⊥ ⇒

(a) name(Mright
i [ℎ]) = name(ℎ) ∧

(b) alg(𝑀 right
𝑖
[ℎ]) = alg(ℎ).

142

(4) Children derive their value from their parent(s)
For Log𝑛 = Logleft

𝑛 and Log𝑛 = Logright
𝑛

Log𝑛 [ℎ] ≠ ⊥ ⇒
xtr⟨𝑛, ℎ1, ℎ2⟩ = ℎ ∧ name(ℎ1) = 𝑛1 ∧ name(ℎ2) = 𝑛2 ⇒

Log𝑛1 [ℎ1] = (ℎ1, hon1, 𝑘1) ≠ ⊥∧
Log𝑛2 [ℎ2] = (ℎ2, hon2, 𝑘2) ≠ ⊥∧
𝑘 = xtr(𝑘1, 𝑘2) ∧ hon = (hon1 ∨ hon2)∧
Log𝑛 [ℎ] = (∗, hon, 𝑘)

xpd⟨𝑛, label, ℎ1, args⟩ = ℎ ∧ name(ℎ1) = 𝑛1 ⇒
Log𝑛1 [ℎ1] = (ℎ1, hon1, 𝑘1) ≠ ⊥∧
𝑘 = xpd(𝑘1, label, args)∧
Log𝑛 [ℎ] = (∗, hon1, 𝑘)

(5) Consistent logs for input keys:

𝑛 = 𝑖 = dh ∨ (𝑖 = (psk, 0) ∧ 𝑛 = psk) ⇒
(Logleft

𝑛 [ℎ] ≠ ⊥) ⇔ (𝑀
right
𝑖
[ℎ] ≠ ⊥) ⇔ (Logright

𝑛 [ℎ] ≠ ⊥)
Logleft

𝑛 [ℎ] ≠ ⊥ ⇒
𝐿𝑜𝑔left

𝑛 [ℎ] = (ℎ, hon, 𝑘)∧
𝐿𝑜𝑔

right
𝑛 [ℎ] = (𝑀 right

𝑖
[ℎ], hon′, 𝑘′)∧

(hon, 𝑘) = (hon′, 𝑘′)

(6) Identical keys and honesty:
𝐾 left
𝑖
[ℎ] = 𝐾 right

𝑖′ [𝑀
right
𝑖
[ℎ]]

We have managed to prove the invariance of state relations (1), (2a), and (2e)
across all oracles. We refer the reader to the project repository for the full details of
SMT-LIB translation of the relations. We prove invariance of all state relations in
separate lemmata in our SMT-LIB code. With this approach, it becomes more clear
which invariants are required to prove same-output and equal-aborts properties of an
oracle and which invariants are proved for the general soundness of the argument. We
use lemmata with names all-invariants-after and all-invariants-before for asserting the
state relations on the game states after and before the oracle call, respectively. For
instance the following shows the invariants definition and all-invariants lemmata for
the oracle SET.

1 (define-fun <relation-all-invariants-before-game_Gks0-game_Gks0Map-SET>

2 (

3 (old-state-Gks0 <GameState_Gks0_<$$>>)

4 (old-state-Gks0Map <GameState_Gks0Map_<$$>>)

5 (return-SET-Gks0 <OracleReturn-Gks0-<$$>-ExternalPskSetter-<$$>-SET>)

143

6 (return-SET-Gks0Map <OracleReturn-Gks0Map-<$$>-Map-<$$>-SET>)

7 (h Bits_*)

8 (hon Bool)

9 (k Bits_*)

10)

11 Bool

12 (all-invariants old-state-Gks0 old-state-Gks0Map)

13)

14 (define-fun <relation-all-invariants-after-game_Gks0-game_Gks0Map-SET>

15 (

16 (old-state-Gks0 <GameState_Gks0_<$$>>)

17 (old-state-Gks0Map <GameState_Gks0Map_<$$>>)

18 (return-SET-Gks0 <OracleReturn-Gks0-<$$>-ExternalPskSetter-<$$>-SET>)

19 (return-SET-Gks0Map <OracleReturn-Gks0Map-<$$>-Map-<$$>-SET>)

20 (h Bits_*)

21 (hon Bool)

22 (k Bits_*)

23)

24 Bool

25 (all-invariants <<game-state-game_Gks0-new-SET>> <<game-state-game_Gks0Map-new-SET>>)

26)

27 (define-fun invariant

28 (

29 (state-Gks0 <GameState_Gks0_<$$>>)

30 (state-Gks0Map <GameState_Gks0Map_<$$>>)

31)

32 Bool

33 (and

34 (invariant-consistent-log-inverse state-Gks0 state-Gks0Map)

35 (invariant-2e state-Gks0 state-Gks0Map)

36 (invariant-5 state-Gks0 state-Gks0Map)

37)

38)

Listing 12: Parts of the invariant file SET.smt2

4.2.5 One-sided invariants and invariant bubbling

BDEFKK prove invariance of state relation (2a) via a local argument over the Key and
Log packages. A local argument simply means that state relation (2a) can be proved
to be preserved across all oracle calls regardless of the choice of the caller oracle.
The main reason is that state relation (2a) describes properties of only the state of
Key and Log packages separately in each game. In other words, the properties hold
for the composition 𝑀small := Key ◦ Log. In Section 2.5, we called the state relations
that concern only one of the left and right games by one-sided state relations. If they
are proved to be invariant, we called them one-sided invariants. For all packages 𝑁 ,
one can prove due to the state separation of 𝑁 and 𝑀small that one-sided invariants
of 𝑀small are also one-sided invariants of 𝑀big := 𝑁 ◦ 𝑀small. That is, one-sided
invariants bubble up from small packages to any bigger packages enclosing them. We
formally state this property as follows:

144

Theorem 4.1 (Invariant bubbling theorem). Let 𝐼 be a one-sided state relation
expressing some properties about the state of SSP package 𝑀small. Let 𝑁 be another
SSP package. Note that 𝐼 is naturally a one-sided state relation (upto renaming of
variables) for the package 𝑀big := 𝑁 ◦ 𝑀small. If 𝐼 is a one-side invariant for 𝑀small
then 𝐼 is also a one-sided invariant for 𝑀big.

The proof of theorem simply follows from the state separation of the packages
in SSP. The package 𝑁 can only modify the state of the package 𝑀small by calling
its oracles. On the other hand, any oracle query to the package 𝑀small preserves the
state relation. As a result, one can conclude that state relations are preserved after any
oracle query to the package 𝑀big.

Going back to our example, we can apply the theorem to 𝑀small := Key ◦ Log while
𝑁 can be the composition of all other packages. It then suffices to prove invariance
of state relation (2a) for 𝑀small := Key ◦ Log. Notice that this is a stronger result than
proving the invariance of (2a) for the games Gks0 and Gks0Map because one proves that
the state relation is preserved for all possible oracle queries with all possible arguments
instead of specific values chosen by the enclosing package 𝑁 .

We prove the invariance of state relations (2a) and (2e) in a separate proof file
for the composition Key ◦ Log. We have separated each of the sub invariants (2a-i) to
(2a-x) in order to make the proof more manageable and point out the dependencies
between them. The following listing presents the proof file. All the SMT files for this
proof exists on the same repository [Raj25b].

1 proof KeyLogInvariants {

2 ...

3 instance game_KeyLogGks0 = KeyLogGks0 {

4 ...

5 }

6 instance game_KeyLogGks0Map = KeyLogGks0Map {

7 ...

8 }

9 gamehops {

10 equivalence game_KeyLogGks0 game_KeyLogGks0Map {

11 SET: {

12 invariant: [

13 ./proofs/abstract-functions.smt2

14 ./proofs/key-log/key-log-invariants.smt2

15 ./proofs/key-log/SET.smt2

16]

17 lemmas {

18 assert-J-invariants: [no-abort, assume-J-invariants]

19 assert-updated-invariant-log-inverse: [no-abort, assume-updated-

invariant-log-inverse]

20 assert-invariant-2a-iii: [no-abort, assume-invariant-2a-iii, assume-

updated-invariant-log-inverse, assume-J-invariants]

21 assert-invariant-consistent-log-for-dh-and-psk: [no-abort, assume-

invariant-consistent-log-for-dh-and-psk, assume-invariant-2a-v, lemma-rand-is-eq]

22 assert-invariant-consistent-log-inverse-level-zero-psk: [no-abort,

assume-invariant-consistent-log-inverse-level-zero-psk, assume-invariant-consistent-

log-for-dh-and-psk]

145

23 assert-invariant-2a-ix-and-2a-x: [no-abort, assume-invariant-2a-ix-

and-2a-x]

24 assert-invariant-2e: [no-abort, assume-invariant-2e]

25 assert-invariant-log-inverse-name: [no-abort, assume-invariant-log-

inverse-name]

26 assert-invariant-log-preserves-name: [no-abort, assume-invariant-log-

preserves-name, assume-invariant-log-inverse-name]

27 assert-invariant-2a-viii: [no-abort, assume-invariant-2a-viii, lemma-

SAMPLE-output-length, assert-invariant-2a-iii, assert-invariant-log-preserves-name,

lemma-injectivity-of-len_alg]

28 assert-invariant-2a-vii: [no-abort, assume-invariant-2a-vii]

29 assert-invariant-2a-iv: [no-abort, assume-invariant-2a-iv]

30 assert-invariants-2a-i-and-2a-ii: [no-abort, assume-invariants-2a-i-

and-2a-ii]

31 assert-invariants-2a-v-and-2a-vi: [no-abort, assume-invariants-2a-v-

and-2a-vi]

32 lemma-SET-returns-same-handle-for-non-dh-and-psk: [no-abort, assume-

invariants-2a-v-and-2a-vi]

33 }

34 }

35 }

36 }

37 }

Although we are proving invariance of state relations with SSBee’s game equiva-
lence syntax but neither of the state relations express a property between the states of
the left and right games. We refer the reader to the repository for the definition of each
of assume and assert lemmata. Briefly, assume lemmata express the state relation
for the states of the games before an oracle call and assert lemmata express the state
relations for the states of the games after an oracle call. The only lemmata that are left
without proof are lemma-rand-is-eq and lemma-injectivity-of-len_alg. The randomness
mapping lemma is a common workaround for the randomness mapping universal
quantification issue discussed in Section 2.5. Lemma lemma-injectivity-of-len_alg states
that the abstract function len_alg is injective. This can be considered part of the
theory we need for our uninterpreted function len_alg. Lemma assert-J-invariants

proves the invariance of Invariant-J, lemma assert-invariant-2e proves the invariance
of Invariant-2e, and lemma assert-updated-invariant-log-inverse proves the invariance
of proeprties related to the inverse tables.

We want to highlight other state relations that have the potential to be proved
similarly via the invariant bubbling theorem in a smaller context. State relations (2b),
(2d), (3), and (4) are all one-sided state relations. However, the smallest package 𝑀small
for which the relations can be proved to be invariant is not necessarily determined by
the tables involved in the relations. For example, state relation (4) can not be proved
for the composition Key◦ Log as it depends on how the oracles XPD and XTR construct
the handles. We describe how deductive program verification tools can be possibly
used to prove the invariance of one-sided state relations. As a result, proper integration
of SSBee with other verification tools remains only two-sided state relations (2c), (5),
and (6) to be proved in SSBee. (State relation (5) is partially proved for all the oracles
except XPD and XTR.)

146

As the final note, our research on this project brought to the light that SSBee does
not check state relations hold for the initial game states. Recall that proving initial
left and right game states belong to the state relation is a crucial assumption for the
Fundamental Theorem of Code Equivalence (2.3). We, though, have not verified this
proof obligation in SSBee and leave it as a future work.

4.3 Cheat sheet of verification techniques for SSBee users

In this section, we enumerate a list of tips and techniques we used or discovered in
this project to verify proof obligations or debug verifications.

Order of verification Start with same-output (first) and equal-aborts (second)
properties and then proceed to the invariants! The reason is that it is easier for these
two proof obligations to pinpoint where to focus on.

For same-output property one shall consider all the return statements of the left
oracle and checks whether the right oracle returns the same value at some point.
Usually there is also a correspondence between the return points. Similar to our
approach, if the output of the oracles can be predicted, one can verify separately
whether the left and right oracles return the correct values. This can speed up the SMT
solver too if one proves the same-output property assuming these separate lemmata
for output values of the left and right oracles. See, for example, the verification of
same-out property for the oracles XTR and XPD at the repository [Raj25b].

For equal-aborts, one should focus on the assertions, abort commands, and the
Maybe type unwrapping operation. All these operations can abort an oracle. For
each of them, if they fail on the left game, there should be a corresponding assertion,
abort command or unwrapping operation that fails on the right game and vice versa.
Unwrapping operations are a common source of mistakes as they are implicit and
hidden from the user in the package code. However, they are automatically inserted by
SSBee in the compiled SMT-LIB file.

Abort! If you are trying to verify a lemma that assumes the built-in lemma no-abort,
you can eliminate if-branches by putting abort in them. In other words, to debug
your verification and find the required invariants, you can use abort in if-branches
that you do not want to focus on when performing a step-by-step proof. If you put
lemma no-abort as a dependency, SSBee assumes the oracles do no abort and program
branches that include a abort command are automatically discarded.

Ghost variables Consider using ghost state variables (introduced in Section 2.5)
to simplify your state relations and lemmata as shown in the KEM-DEM example
in the same section. Since SMT solvers are better off dealing with quantifier-free
formulae, ghost variables can help to remove unnecessary quantification. Precisely,
ghost variables can store intermediary values of the state variables such as public/secret
key pair or randomness strings used by the encryption schemes. Therefore, if you
are modeling your encryption scheme functions with abstract functions and want to

147

express a specific property about them (e.g. scheme correctness), you can remove
quantification over the public/secret key pair or randomness string by expressing the
property with their concrete values stored in the ghost variables. Ghost variables can
also store program counters to help you identify from which return statement the
oracle returns or at which assertion or abort command the oracle fails. The idea is to
define an integer state variable and assign unique values at interesting points of your
oracle. You can then assert the counter to be specific value to ensure the oracle has the
intended behavior. That is possible because SSBee returns the game state including
all package states when it aborts.

Use lemmata Following the previous tip, consider using lemmata and minimize
your direct assertions in the SMT solver. Although SSBee gives flexibility to the
user for expressing properties in a rich language like SMT-LIB, this flexibility can
be abused and lead to unknown results. Identify the dependencies of your lemma or
code equivalence proof obligation (same-output, equal-aborts, and invariant) and state
required properties as lemmata. For example, consider stating properties involving
a general universal quantifier with the concrete (and possibly ghost) state variables
or inputs of the oracles. See lemmma-kem-correctness of the KEM-DEM example in 2.5.
Lemmata also brings visibility to the dependencies of properties we prove with SSBee
and makes it easier to identify properties that are easier to prove with other verification
tools.

Another application of lemmata are in proof debugging. If the SMT solver can not
verify a compelx lemma, one can simulate a proof by case analysis by stating each
case as lemma and try to prove the cases separately.

Assume randomness equality Consider directly assuming the randomness sam-
pling equalities as a lemma if you have multiple randomness mapping for your oracle
and you feel your invariants are strong and complete. We discussed the randomness
mapping issue we faced in KEM-DEM example and our workaround for the issue in
Section 2.6.6.

Lookup loops As mentioned earlier, SSBee does not support iteration statements
and loops. We have introduced two techniques in this thesis to model a specific
iteration scenario using abstract functions and tables. Both of these techniques try to
solve the problem of finding a table entry with specific conditions. The first approach
replaces the table lookup with a variant of epsilon operator inspired by Hilbert’s epsilon
calculus [AZ24]. See Lemma 5.20 in Section 5 verified in SSBee using this technique.
The second approach is to define a separate inverse table 𝑇−1 and preemptively keep
track of entries you are going to lookup in table 𝑇 in future when updating table 𝑇 .
See Section 4.1.3 for such an example in SSBee translation of TLS 1.3 key schedule
security games.

Simplify oracle code Simplifying should be an obvious and intuitive tip; however,
we pinpoint some concrete examples. In security modeling of TLS 1.3 key schedule

148

we initially replaced irrelevant oracle calls for the code equivalence with a an abstract
function. One example was the HASH(𝑡) oracle exposed by the package Hash. We
replace an oracle call to HASH(𝑡) in the code of oracle XPD of the package Xpd with
an abstract function hash1(t). We argued in Section 4.1.2 that the HASH oracle does
not abort if the hash algorithm is checked to be supported upfront in the package Key.
After verifying some properties, we noticed that since the package Hash0 is stateless
(its state is only written in the real package but not in the idealized package Hash1) and
HASH oracle does not abort (i.e. a total mathematical function), we do not need to
complicate the code by replacing the abstract function hash1(t) back again with the
oracle. In general, if you can verify your lemmata by replacing a stateless abort-free
oracle with an unrestricted abstract function, you have proved a stronger result and do
not need to instantiate the abstract function with the concrete oracle code.

Taking one step further, this approach is also useful in debugging proofs. You may
want to replace an even stateful oracle oracle with an abstract function and state some
properties in a lemma only to focus on another challenging part of the oracle. This
approach is generalized in the modular verification in program verification literature
when method calls are replace with their postconditions.

Simplify games This is also another trivially-looking tip but can be extremely
difficult or impossible in some situations. The idea is to pull out all the irrelevant code
from the oracles of your games 𝐺0 and 𝐺1 that you want to prove code equivalent.
The pulling out process can be formally described as a reduction to the games 𝐺′0
and 𝐺′1. (i.e. the irrelevant code are extracted into a reduction package R such that

𝐺𝑏

𝑐𝑜𝑑𝑒≡ R → 𝐺′
𝑏
) Then equivalence of 𝐺′0 and 𝐺′1 can be proved in SSBee. We have

given a concrete example for this technique in Lemma 5.20 of Section 5.

Proving invariance In the following, we briefly describe several related techniques
for proving invariance. The most practical technique is to isolate state relations
you want to prove their invariance. Namely, if your state relation 𝐼 is of the form
𝐼 = 𝐼1 ∧ 𝐼2 ∧ 𝐼3 ∧ · · · ∧ 𝐼𝑛 (as is usually the case), one can try to prove 𝐼 𝑗 independently
from the others when assuming 𝐼 holds in the old game states. One can even take one
step further and determine which state relations are necessary to prove 𝐼 𝑗 and only
assume those. We have given an example of this approach in Section 4.2.5. Isolating
invariants can make the verification much faster as the SMT solver does not need
to search in a larger space. Moreover, similar to lemmata, it brings visibility to the
dependency of the invariants. Inspired from the Section 4.2.5, try identifying the
one-sided invariants and suitable subgames to apply the Invariant bubbling theorem
4.1. Since one-sided invariants are exclusive properties of either the left or the right
game, they can be proved independently from the other game. With class analogy
of packages in SSP, we are given a class (package) with a set of exposed methods
(oracles) sharing the private state of the class and we want to prove some properties
are preserved after each method call. We argue in our future vision of SSBee why we
believe identifying one-sided invariants are useful.

149

Invariance of state relations with tables It is very common for the state relations
to express a property with a universal quantifier for all table indices. (All state
relations of Lemma C.2 in Section 4.2.4 are of this form) When proving invariance of
such state relations, if the oracle does not modify the tables involved in the relation,
then the preservation of the state relation is trivially followed. However, when the
oracle modifies one or more entries of the table, these new entries might falsify the
state relation in the new tables. One can dig deep into proof of invariance with the
SMT-LIB language and identify what can or can not be proved by the SMT solver and
correspondingly add necessary lemmata, change the code of packages or modify the
state relations. We have given one such example of step by step invariance proving in
the repository [Raj25d] of the SSBee project for verification of Lemma 5.20. As a
final tip, it is best to define as general and strong as possible invariants.

Translation tips When translating the pseudocode of your SSP packages, consider
defining stateless packages for reusing recurring pieces of code and increasing
readability. Use Bits(*) to define complex data structures (e.g. recursive data types,
see the discussion before Section 4.1.2) Use abstract functions for custom operations
operations on your data structures but be mindful when using them. They can make
life harder for the SMT solver.

SSBee output We want to emphasize that previous techniques are useful when we
get unknown results from the SMT solver. If the SMT solver returns a sat, it has found
a concrete counterexample and SSBee returns the inputs passed to the adversaries as
well as a pair of possible game states before the oracle query!

4.4 Future vision for SSBee

In this section, we compare the current status of SSBee with a desired future version
of SSBee.

Error reporting As mentioned before, for each lemma, SSBee tries to prove the
lemma with a proper SMT-LIB formula passed to the SMT solver. If the SMT solver
returns unknown, which is the case most of the time if the solver does not return
unsat, the user does not receive any help for the source of the issue. For instance,
proving the same-output lemma requires that if the left oracle returns a value 𝑣 from
one of its return , statements, the right oracle also returns the same 𝑣 from some
return statement. It might be the case that only one of the return statements are
problematic. However, this information is not currently communicated to the user. A
similar situation happens for the equal-aborts property where one abort statement,
say on the left, aborts while the right oracle does not abort. This granualar information
can help to user to focus their time and energy on the actual source of the problem.
Currently, the idea to debug a failing same-output lemma is to insert abort statements
before return statements to eliminate those cases. For the equal-aborts, one can not
use the same idea but they can use ghost variables for program counters.

150

However, it is indeed possible to generate verification conditions for each return
statement of one of the games and check which fails and which proves. Similarly,
verification conditions can be generated for abort and assert statements.

Verification condition generation (also known as predicate transformer semantics)
is a fundamental technique in program veirifcation to argue about correctness of
programs. In fact, modern program verification tools translate high level programming
languages to an Intermediate Verification Langauge (IVL) which is then verified using
SMT solvers by the low level verifiers such as Viper [MSS16], Boogie [BCD+05],
Dafny [Lei10], etc. The important property of the translation is soundeness: a verified
translated program should imply correctness of the original program. Currently,
SSBee translates to code of oracles directly to SMT-LIB langauge. SSBee translates
each oracle to an SMT-LIB function that receives the oracle inputs and a game state
and returns an output (abort or value) and a new game state using nested SMT-LIB
ternary operators ite. As a result, the nesting depth of the ite operations grows with
the number of if conditions in the oracle code. Moreover, SSBee inlines the code of
queried oracles. These design choices treat an oracle as a big monolithic function
that can be applied to some inputs and game state and returns an output or abort.
This approach makes it difficult to argue about individual return , assert , or abort
statements in the code.

Translation to intermediate verification languages or even adopting ideas for
verification condition generation can significantly help the user with more granular
errors. Moreover, directly relying on the SMT-LIB ternary operator ite makes it
difficult to translate loops. In program verification, users of verification tools are
required to provide invariants for their loops. Loop body is verified separately to
check they preserve the invariants. After verification of the loop body, the loop is
roughly replaced with its invariant condition. These steps rely on verification condition
generation and as a result adopting the ideas of verification condition generation can
help with adding support for loops.

Modular verification We mentioned in the cheat sheet that oracles codes can be
simplified during proof debugging by replacing oracles with abstract functions and
assuming some properties about them out-of-the-box as a lemma. This idea is a variant
of modular verification. In modular verification approach to verification of methods
that call other methods, firstly, a precondition 𝑄 and postcondition 𝑃 is defined for
each method 𝑀. In the next step, for each method 𝑀, assuming 𝑄, we try to prove
after execution of the method body 𝑄 holds. However, method calls in the body of 𝑀
are not inline but rather only the precondition of a called method 𝑀′ is checked at the
call site and then the postcondition of the method is assumed at that point. The idea is
similar to verification of loops where the body of the loop is verified separately that
preserves the invariants and the whole loop is roughly replaced with an statement that
assume the invariant holds at that point. We consider this feature very useful if the
user can switch between modular verification and inlining when verifying lemmata in
SSBee.

151

Integrations with other tools We introduced the concept of one-sided invariants
in Section 2.14 and discussed the Invariant bubbling theorem (Theorem 4.1) in Section
4.2.4. Briefly, one-sided invariants are state properties of an SSP package that are
preserved after each oracle query to the package. Analogy of SSP packages and classes
translates the problem of proving invariance of one-sided state relations to proving
invariance of some properties of a class private fields after each method call. Observe
that we are only dealing with one class (one program) unlike our usual scenario of code
equivalence between two packages (two programs). In our future vision of SSBee, it
is conceivable that SSBee is integrated with program verification tools such as Dafny
[Lei10] and Viper [MSS16] that are built for exactly the same problem of proving
properties of a single program with many helpful program correctness debugging
feature. As a result, we envision a successful integration of SSBee with these tools
where, for example, Danfy or Viper code as well as a formal specification of the code
equivalence proof obligations are automatically generated by SSBee and allowing the
user to continue with the other tool and reuse the positive verification result back again
in SSBee. Since one-sided invariants are very common (as can be seen in this thesis)
in code equivalence proofs, we consider integration with program verification tools
(and collaboration with the tool developers) a promising research direction helping
cryptographers generating verified proofs easier.

Moreover, it is very helpful to generate lemma statements in other verification
tools or even interactive theorem provers when a property can not be verified in
SSBee. For example, SSBee is not very well suited for complex randomness mapping
scenarios. Concretely, for a successful verification in SSBee, one needs corresponding
randomness sampling operations from the left and right games because SSBee simply
derandomizes the oracles and map the randomness strings they consume. However,
the same randomness mapping concept may appear in more complex situations where
there is no one to one correspondence between the sampling points of the left and
right oracles. For example, distribution of uniformly sampling a string of length 128
is the same as concatenation of two uniformly sampled strings of length 64. (i.e.
two randomness sampling operations from one oracle corresponding to one sampling
operation in the other oracle). At the same time, EasyCrypt is another powerful verifier
that has necessary probabilistic program logic to reason about such distributions.
Another example is statistical game hops such as 𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝 defined in Figure 35 and
advantage of which is bounded in Lemma 5.4.

Finally, it is valuable to have the SMT solver output a proof for unsat results and
check them automatically with a theorem prover engine such as Rocq [Roc25].

Proof editor SSBee is currently a command line tool. In a previous work [Pun21],
Puniamurthy developed a proof viewer for SSP proofs and visualized the Yao’s garbling
scheme proof in the tool. His proof viewer allowed sketching SSP compositions as
well as viewing packages, reductions and code equivalence proofs, lemmata, and
theorems all in an organized visual and interactive environment in the web browser. As
a follow-up on their work, we propose a SSP proof editor or integrated development
environment (IDE) to write and type-check code of packages as well as sketching

152

SSP compositions while automating the proof of code equivalence and reductions
with SSBee engine. Ideally, the tool should allow generation of boilerplate code for
the compositions directly from the graphical environment. Moreover, it is desired
that template codes for packages, proof files, invariants, randomness mappings,
and lemmata are generated in a few clicks of the user. This environment could be
implemented as a language extension for Visual Studio Code or other common IDEs.

153

5 Salted Oracle Diffie-Hellman Assumption Analy-
sis

Brzuska, Delignat-Lavaud, Egger, Fournet, Kohbrok, Kohlweiss (BDEFKK) [BDLE+21]
reduced key schedule security of TLS 1.3 to collision resistance of hash functions
used in the protocol (SHA256, SHA384, SHA512), (dual) pseudorandomness of
extract and expand functions, pre-image resistance of expand functions, and Salted
Oracle Diffie-Hellman (SODH) assumption. (Refer to Section 3 for TLS 1.3 extractor
and expanders.) SODH is inspired by the Oracle Diffie-Hellman (ODH) assumption
introduced by Abdalla, Bellare, and Rogaway [ABR01] and the PRF-ODH assumption
introduced by Jager, Kohlar, Schäge, and Schwenk (JKSS) [JKSS11].

The ODH assumption states that it is hard to distinguish 𝐻 (𝑔𝑢𝑣) from a uniformly
random string of the same length for a hash function 𝐻 given 𝑔𝑢, 𝑔𝑣 and even access
to an oracle H𝑢 (𝑋) := 𝐻 (𝑋𝑢) where the adversary is disallowed from submitting
𝑋 = 𝑔𝑣. Compared to ODH, SODH allows the adversary to choose a salt 𝑠 for the
extractor xtr(·, 𝑠) where xtr(·, 𝑠) replaces 𝐻 (·). The salt is necessary in TLS 1.3 Key
Schedule Security because the hash function in the assumption is in fact an extractor
and as illustrated in Section 3, an extractor is used to combine the Diffie-Hellman (DH)
secret and a salt derived from the Pre-shared Key (PSK). Therefore, it is important
(and easier for the proof) to consider the salt is ultimately chosen by the adversary.

BFGJ [BFGJ17] introduce several variants of PRF-ODH assumption but in all
of them the adversary is given the first DH share 𝑔𝑢 and can make none, single or
multiple queries (in different variants) to oracle ODH𝑢 (𝑋,𝐶) := PRF(𝑋𝑢, 𝐶) where
PRF(𝐾,𝐶) is a pseudorandom function. In the next stage, adversary is required to
generate a challenge string 𝑐′ and challenger responds with the second DH share 𝑔𝑣
and either PRF(𝑔𝑢𝑣, 𝑐′) or a uniformly random string of the same length. After this
point and before returning its guess, the adversary is allowed to make none, single or
multiple queries (in different variants) to oracle ODH𝑣 (𝑋,𝐶) := PRF(𝑋𝑣, 𝐶). One
can think of 𝑐′ as salt chosen by the adversary.

Unlike the PRF-ODH, the adversary in the SODH game is allowed to receive as
many honest DH shares as it wishes (DH share 𝑋 = 𝑔𝑥 is honest when 𝑥 is uniformly
chosen by the challenger and is not known to the adversary) and observes xtr(𝑌 𝑥 , 𝑠)
upon querying any adversarially chosen salt 𝑠, any adversarially chosen group element
𝑌 , and honest DH share 𝑋 = 𝑔𝑥 generated by the security game. Moreover, the
adversary in the SODH can freely interleave these oracle calls from the beginning
without being restricted to choose the salt based on one DH share. Finally, the
adversary is tasked with distinguishing xtr(𝑔𝑥𝑦, 𝑠) from a uniformly random string of
the same length where 𝑥 and 𝑦 are private exponents of honest DH shares 𝑋 = 𝑔𝑥 and
𝑌 = 𝑔𝑦.

Another difference between SODH and PRF-ODH is that SODH allows the hash
function to be agile. Recall from Section 3, xtr(·, 𝑠) is based on HMAC which in turn
is based on the hash function. The TLS 1.3 standard allows the use of three hash
algorithms SHA256, SHA384, and SHA512. Due to the possibility of the clients and
servers in TLS sessions to hash the same DH secret under different algorithms, the

154

SODH assumption too, allows the adversary to choose the hash algorithm under which
xtr(𝑌 𝑥 , 𝑠) is computed by “tagging” the salt (i.e. using a salt length corresponding to
the hash algorithm).

BDEFKK [BDLE+21] optimistically claim that SODH assumption can be reduced
to computational Diffie-Hellman (CDH) assumption in the random oracle model. In
this section, we show that SODH assumption can be reduced in the programmable
random oracle model to the well-known strong Diffie-Hellman (SDH) assumption
also introduced by Abdalla, Bellare, and Rogaway [ABR01]. SDH assumption is
the same as CDH assumption (computing 𝑔𝛼𝛽 given 𝑔𝛼 and 𝑔𝛽) except that the
adversary has additionally access to a variant of decisional Diffie-Hellman (DDH)
oracle DDH𝛼 (𝑋,𝑌) := (𝑋𝛼 ?

= 𝑌) where 𝑔𝛼 is one of the DH shares returned by CDH
challenger. The additional DDH oracle is helpful in checking random oracle outputs
consistency with other oracles in SODH security game.

Additionally, our security analysis also shows that SODH assumption captures
another security notion with roots in the natural collisions of DH secrets described
in Section 3.1.1. To describe this collisions, let DH shares 𝑋 = 𝑔𝑥 , 𝑋′ = 𝑔𝑥

′ , and
𝑌 = 𝑔𝑦 are honest shares chosen by the SODH game where the exponents 𝑥, 𝑥′, and
𝑦 are unknown the adversary. If the adversary can find a share 𝑌 ′ = 𝑔𝑦

′ such that
𝑌 ′𝑥

′
= 𝑌 𝑥 (i.e. DH secrets of pairs (𝑋,𝑌) and (𝑋′, 𝑌 ′) collide) then the adversary can

break SODH game without necessarily computing 𝑌 𝑥 . That is due to the fact that
xtr(𝑌 𝑥 , 𝑠) = xtr(𝑌 ′𝑥′ , 𝑠) but upon adversary’s query, the ideal SODH game samples
and returns a random string instead of xtr(𝑌 𝑥 , 𝑠) due to the honesty of 𝑌 𝑥 . (𝑋 and 𝑌
are both chosen by the adversary) At the same time, xtr(𝑌 ′𝑥′ , 𝑠) is directly returned to
the adversary upon its query in the ideal game. Therefore, a reduction from SODH to
CDH shall also consider these cross collision attacks. We will later on formalize this
security notion and reduce SODH to a combination of SDH and this notion.
Remark. Interestingly, BFGJ [BFGJ17] show an impossibility result that existence of
a black-box algebraic reduction 20 in the standard model from snPRF-ODH or nsPRF-
ODH 21 to a DDH-augmented problem 22 implies either the DDH-augmented problem
is not hard or decisional square Diffie-Hellman problem is not hard. Although snPRF-
ODH is a weaker assumption than SODH, the impossibility shows the importance of
the random oracle. However, in the random oracle model making the random oracle
outputs to be consistent with responses of other oracles is very difficult when reducing
from SODH to CDH because the reduction does not have access to a DDH oracle
anymore.

Inspired by mmPRF-ODH instantiation of [BFGJ17], we reduce SODH to SDH
in two steps. First, we reduce the SODH assumption to the augmented square
Diffie-Hellman assumption (SqDH). The augmented SqDH assumption is the same
as the square Diffie-Hellman assumption, where the adversary’s task is to compute

20any reduction that performs group operations in a pre-defined way such as multiplication
21snPRF-ODH is a variant of PRF-ODH in which the adversary can make only a single query to

ODH𝑢 (𝑋,𝐶) but no queries to ODH𝑣 (𝑋,𝐶)
22a combination of an abstract cryptographic problem and a DDH problem such that a solution to

either of them is a solution to the augmented problem

155

𝑔𝛼
2 given 𝑔𝛼, except that the adversary is additionally given access to a DDH oracle

DDH𝛼 (𝑋,𝑌) := (𝑋𝛼 ?
= 𝑌). In the next step, SqDH is reduced to SDH, via the original

reduction by [BFGJ17]. We refer the reader to Section 3.3 of their work for proof of
this step.

Section 5.1 formally defines the security games for SqDH, SDH, SODH, and
RO-SODH (random oracle variant of SODH) assumptions using the State-separating
proofs (SSP) framework. Section 5.2 presents the security reduction.

5.1 Security games

We define SODH, SODH-RO, SqDH, SDH games as follows:

𝐺𝑠𝑜𝑑ℎ𝑏,grp := SodhCore𝑏,grp → xtr0

𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,grp :=
SodhCore𝑏,grp

ID𝐻
→ RO

𝐺𝑠𝑞𝑑ℎ𝑏,grp := Sqdh𝑏,grp

𝐺𝑠𝑑ℎ𝑏,grp := Sdh𝑏,grp

where packages SodhCore, RO, xtr0, Sqdh, Sdh are defined in Figure 34. Figure 33
visualizes the call graph of games 𝐺𝑠𝑜𝑑ℎ𝑏,grp and 𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,𝑔𝑟 𝑝.

SodhCore𝑏,𝑔 xtr0HDHGEN
XTR

(a) 𝐺𝑠𝑜𝑑ℎ𝑏,grp

SodhCore𝑏,𝑔

RO

HDHGEN
XTR

H

(b) 𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,grp

Figure 33: SODH and SODH-RO games

Similar to the TLS key schedule security, we consider concrete security assumptions
as described in Section 2.1. Briefly, we relate the advantage of an adversary playing in
𝐺𝑠𝑜𝑑ℎ𝑏,grp to the advantage of adversary in 𝐺𝑠𝑑ℎ𝑏,grp game.

The SODH game 𝐺𝑠𝑜𝑑ℎ𝑏,grp after inlining code of xtr0 package matches exactly
the game defined in Section 3.3 of [BDLE+21]. Notice that a DH share 𝑋 is honest when
it is returned by DHGEN() and 𝐸 [𝑋] is set. Observe that XTR(𝑋,𝑌, 𝑠) computes
xtr(𝑌 𝑥 , 𝑠) when 𝑋 = 𝑔𝑥 is an honest share generated by DHGEN() by asserting
𝐸 [𝑋] ≠ ⊥ in the very first line. Moreover, the only difference between the real and
ideal SODH game is when the adversary queries XTR(𝑋,𝑌, 𝑠) with 𝑋 and 𝑌 both
being honest. The ideal game uniformly samples a bitstring of length len(𝑠𝑎𝑙𝑡). Notice
that it is crucial for 𝑌 to be honest when a random string is sampled in the ideal game.

When xtr(·, ·) is modeled as a random oracle, all outputs by XTR(𝑋,𝑌, 𝑠) and
random oracle H(𝑍, 𝑠) are uniformly random strings in game SODH-RO. Hence,
the only way for the adversary to distinguish the real and ideal game is to query

156

SodhCore𝑏,𝑔𝑟 𝑝

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝐸 : table
𝑆 : table

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝑥 ←$ 𝑍𝑞

𝑋 ← 𝑔𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :
ℎ← dh⟨sort(𝑋,𝑌)⟩
if 𝑆[ℎ, 𝑠𝑎𝑙𝑡] = ⊥ :

𝑆[ℎ, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[ℎ, 𝑠𝑎𝑙𝑡]
return H(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡)

RO

State

𝑇 : table

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

Sqdh𝑏,𝑔𝑟 𝑝

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝛼 : integer

SAMPLE()
𝑔 ← gen(𝑔𝑟 𝑝)
if 𝛼 ≠ ⊥ :

return 𝑔𝛼

𝑞 ← ord(𝑔)
𝛼←$ 𝑍𝑞

return 𝑔𝛼

CHECK(𝑍)
assert 𝛼 ≠ ⊥
𝑔 ← gen(𝑔𝑟 𝑝)

if 𝑏 ∧ 𝑍 = 𝑔𝛼
2

:
return true

return false

DDH(𝑌, 𝑍)
assert 𝛼 ≠ ⊥
if 𝑌 𝛼 = 𝑍 :

return true
return false

xtr0

H(𝑍, 𝑠𝑎𝑙𝑡)
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
return xtr𝑎𝑙𝑔 (𝑍, 𝑠𝑎𝑙𝑡)

Sdh𝑏,𝑔𝑟 𝑝

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝛼 : integer
𝛽 : integer

SAMPLE()
𝑔 ← gen(𝑔𝑟 𝑝)
if 𝛼 ≠ ⊥ :

return 𝑔𝛼

𝑞 ← ord(𝑔)
𝛼←$ 𝑍𝑞

𝛽←$ 𝑍𝑞

return (𝑔𝛼, 𝑔𝛽)

CHECK(𝑍)
assert 𝛼 ≠ ⊥
𝑔 ← gen(𝑔𝑟 𝑝)
if 𝑏 ∧ 𝑍 = 𝑔𝛼𝛽 :

return true
return false

DDH(𝑌, 𝑍)
assert 𝛼 ≠ ⊥
if 𝑌 𝛼 = 𝑍 :

return true
return false

Figure 34: Code of packages SodhCore, xtr0, RO, Sqdh, Sdh157

XTR(𝑋,𝑌, 𝑠) with 𝑋 = 𝑔𝑥 and 𝑌 = 𝑔𝑦 both being honest and also the random oracle
on H(𝑔𝑥𝑦, 𝑠). In the real game, the answers are consistent while in the ideal game
they are not except with probability 1

2len(𝑠) . In the ideal game, the oracle XTR(𝑋,𝑌, 𝑠)
samples a random string 𝑟 and store it in the table 𝑆 while the oracle H(𝑔𝑥𝑦, 𝑠) only
searches the table 𝑇 and sample another random string independently from 𝑟.

We encode search-based SDH game from Section 5 of [ABR01] as an indistin-
guishability game in SSP using CHECK oracle. (See 2.1 for a discussion on search
games.) SqDH search-based game from Section 3.3 of [BFGJ17] is also encoded as
an indistinguishability game.

Notice that 𝑠𝑎𝑙𝑡 is agile and tagged with the description of a hash function algorithm
from the set H = {sha256, sha384, sha512}. Therefore, len(𝑎𝑙𝑔) ∈ {256, 384, 512}
for 𝑎𝑙𝑔 ∈ H . Moreover, the extractor algorithm xtr𝑎𝑙𝑔 (·, ·) is also agile. It checks
the tag of the salt and use the corresponding hash function for the underlying hmac
operation. Also, gen(𝑔𝑟 𝑝) returns the generator of group 𝑔, ord(𝑔) returns the order
of generator, and id(𝑔𝑟 𝑝) returns the identity element of the group. 23 𝑍𝑞 denotes
the positive integers less than or equal to 𝑞. Let ⟨𝑋⟩ be a bitstring representation of
a group element 𝑋 . Handle dh⟨sort(𝑋,𝑌)⟩ can be defined to be the tuple (𝑋,𝑌) if
⟨𝑋⟩ < ⟨𝑌⟩ and (𝑌, 𝑋) otherwise. Finally, 𝑇 [𝐾] denotes entry in the table 𝑇 with key
𝐾 .

5.2 Security reduction

As hinted in Section 3.2, sort(𝑋,𝑌) is critical in the game 𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,grp to prevent
trivial attacks by swapping the shares. Namely, without sorting the shares, two distinct
handles dh⟨𝑋,𝑌⟩ and dh⟨𝑌, 𝑋⟩ point to the same key 𝑔𝑥𝑦 that confuses the ideal
game to sample distinct strings of length len(𝑎𝑙𝑔) with high probability. This can be
easily exploited by the adversary to distinguish the real and ideal games. However,
sorting only prevents trivial collision attacks. We refer to a pair of DH shares (𝑋,𝑌)
as honest if they are both generated by the oracle DHGEN. We denote the honesty
of the pair by hon(𝑋,𝑌) which can be 0 (dishonest) or 1 (honest). We say two pairs
of DH shares (𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦) and (𝑋′ = 𝑔𝑥

′
, 𝑌 ′ = 𝑔𝑦

′) collide if 𝑔𝑥𝑦 = 𝑔𝑥
′𝑦′ . If

the adversary can cause a collision between two pairs (𝑋,𝑌) and (𝑋′, 𝑌 ′) where
hon(𝑋,𝑌) = hon(𝑋′, 𝑌 ′) = 1 (two honest pairs) or hon(𝑋,𝑌) ≠ hon(𝑋′, 𝑌 ′) (an
honest and a dishonest pair), it can distinguish the real and ideal games 𝐺𝑠𝑜𝑑ℎ𝑟𝑜0,grp

and 𝐺𝑠𝑜𝑑ℎ𝑟𝑜1,grp. In case of hon(𝑋,𝑌) = hon(𝑋′, 𝑌 ′) = 1, the ideal game samples
two different strings for essentially the same value xtr(𝑔𝑥𝑦, 𝑠) for adversarially chosen
𝑠. We define the pair of security games 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝 for 𝑏 ∈ {0, 1} and group grp
in Figure 35 to capture these honest collisions. In case of hon(𝑋,𝑌) ≠ hon(𝑋′, 𝑌 ′),
say 𝑌 ′ is dishonest, the adversary distinguish the real and ideal games by choosing
some salt 𝑠 and querying XTR(𝑋,𝑌, 𝑠) and XTR(𝑋′, 𝑌 ′, 𝑠). Query XTR(𝑋,𝑌, 𝑠) is
responded with a uniformly random string while XTR(𝑋′, 𝑌 ′, 𝑠) is responded with

23Order of generator is the same as order of group if the group is cyclic of prime order. The order of
group being prime is very important for the statistical game hop as well as last game hop we make in
the proof of Lemma 5.6. See [CJ19] for small subgroup and invalid curve attacks on protocols using
nonprime-ordered Diffie-Hellman groups.

158

xtr(𝑌 ′𝑥 , 𝑠) which collides with the randomly chosen string with small probability.
We define the pair of security games 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝 for 𝑏 ∈ {0, 1} and group grp in
Figure 36 to capture these cross collisions. As hinted before, we first reduce SODH
assumption to SqDH and then reduce SqDH to SDH. Notice that these collision attacks
prevent an adversaryA against 𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,grp to be used to break 𝐺𝑠𝑞𝑑ℎ𝑏,grp because
the adversary A can distinguish the games 𝐺𝑠𝑜𝑑ℎ𝑟𝑜0,grp and 𝐺𝑠𝑜𝑑ℎ𝑟𝑜1,grp without
querying the random oracle on the SqDH secret 𝑔𝛼2 . We bound the advantage of any
adversary A against the game in Lemma 5.1. On the other hand, game 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝 is
the other security notion captured by SODH that our analysis brought to the light. In
Theorem 5.2, we reduce SODH to indistinguishability of the games 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝 and
𝐺𝑠𝑑ℎ𝑏,𝑔𝑟 𝑝.

Lemma 5.1. For any adversary A, Adv(A, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,grp) ≤ 6(𝑄2)
𝑞
+ 36(𝑄3)

𝑞2 +
24(𝑄4)
𝑞3 .

Proof. See Section 5.2.1. □

Theorem 5.2 (SDH implies SODH). Let A be an adversary. Then, there exists PPT
reductions Rgrp, R𝑠𝑑ℎ, and R𝑏,grp

𝑐𝑐𝑜𝑙𝑙
such that,

Adv(A, 𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,grp) ≤
√︁

Adv(A → Rgrp → R𝑠𝑑ℎ, 𝐺𝑠𝑑ℎ𝑏,grp)

+ 2 ×
(︁6(︁𝑄2)︁
𝑞
+

36
(︁𝑄
3
)︁

𝑞2 +
24

(︁𝑄
4
)︁

𝑞3 + 1
𝑞

)︁
+ Adv(A → R0,grp

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,grp) + Adv(A → R1,grp

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,grp)

where 𝑄 is the number of DHGEN queries made by the adversary and 𝑞 is the order
of group grp.

In order to prove Theorem 5.2, we define two auxiliary games 𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝 and
𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝. Figures 37 and 38 respectively presents the pseudocode definition of
the games 𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝 and 𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝. We bound the advantage of any adversary A
against the games𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝 and𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝 respectively in Lemma 5.3 and Lemma
5.4.

Lemma 5.3. For any adversary A, Adv(A, 𝐺𝑎𝑙 𝑝ℎ𝑎𝑏,grp) ≤ 1
𝑞

where 𝑞 is the order
of group 𝑔𝑟 𝑝.

Proof. See Section 5.2.2. □

Lemma 5.4. For any adversary A, Adv(A, 𝐺𝑠𝑡𝑎𝑡𝑏,grp) = 0.

Proof. See Section 5.2.3. □

Next, we adopt the following result from [BFGJ17].

Lemma 5.5 (SDH implies SqDH, proved in Section 3.3 of [BFGJ17]). Let A be an
adversary. Then, there exists a PPT reduction R𝑠𝑑ℎ such that,

Adv(A, 𝐺𝑠𝑞𝑑ℎ𝑏,𝑔𝑟 𝑝) ≤
√︁

Adv(A → R𝑠𝑑ℎ, 𝐺𝑠𝑑ℎ𝑏,𝑔𝑟 𝑝)

159

R𝑏,𝑔𝑟 𝑝
ℎ𝑐𝑜𝑙𝑙

State

𝑆 : table
𝑇 : table

DHGEN()
return DHGEN()

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert DHGET(𝑋) ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ DHGET(𝑌) ≠ ⊥ :
𝑓 ← FIND(𝑋,𝑌, 𝑠𝑎𝑙𝑡) :
if 𝑓 ≠ ⊥ :

return 𝑓

if 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]

if 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡]

𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

SET(𝑋,𝑌, 𝑠𝑎𝑙𝑡, 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡])
return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]

return H(𝑌DHGET(𝑋) , 𝑠𝑎𝑙𝑡)

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

𝐺
𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝑆 : table

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝑥 ←$ 𝑍𝑞

𝑋 ← 𝑔𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

DHGET(𝑋)
return 𝐸 [𝑋]

SET(𝑋,𝑌, 𝑠𝑎𝑙𝑡, ℎ)
assert 𝐸 [𝑋] ≠ ⊥ ∧ 𝐸 [𝑌] ≠ ⊥
𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ← ℎ

FIND(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥ ∧ 𝐸 [𝑌] ≠ ⊥
if 𝑏 :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋]∧

{𝑋,𝑌 } ≠ {𝑋 ′, 𝑌 ′} :
return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

return ⊥

𝐺
𝑏,𝑔𝑟 𝑝

3

State

𝐸 : table
𝑆 : table
𝑇 : table

DHGEN()
same as the left

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋]∧

{𝑋,𝑌 } ≠ {𝑋 ′, 𝑌 ′} :
return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

if 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]

if 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡]

𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return H(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡)

H(𝑍, 𝑠𝑎𝑙𝑡)
same as the left

Figure 35: Game 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,grp, reduction R𝑏,grp
ℎ𝑐𝑜𝑙𝑙

, and game 𝐺𝑏,grp
3 for comparison

160

R𝑏,𝑔𝑟 𝑝
𝑐𝑐𝑜𝑙𝑙

DHGEN()
𝑋 ← DHGEN()
𝐸 [𝑋] ← 𝑋

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑓 ← FIND(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
if 𝑓 ≠ ⊥ :

return 𝑓

if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :
foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if CLAW(𝑌, 𝑋,𝑌 ′, 𝑋 ′) :
return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

SET(𝑋,𝑌, 𝑠𝑎𝑙𝑡, 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡])
return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :
if CLAW(𝑌, 𝑋,𝑌 ′, 𝑋 ′) :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if DDH(𝑋,𝑌, 𝑍) :
return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

SET(𝑋,𝑌, 𝑠𝑎𝑙𝑡, 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡])
return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if DDH(𝑋,𝑌, 𝑍) :
return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝐺𝑐𝑐𝑜𝑙𝑙𝑏

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝐿 : table
𝐸 : table

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝑥 ←$ 𝑍𝑞

𝑋 ← 𝑔𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

SET(𝑋,𝑌, 𝑠𝑎𝑙𝑡, ℎ)
assert 𝐸 [𝑋] ≠ ⊥
𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ← ℎ

FIND(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥
if ¬𝑏 :

return ⊥
foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝐿 :

if 𝑌𝐸 [𝑋] = 𝑌 ′𝐸 [𝑋
′]∧(︁

(𝐸 [𝑌] = ⊥) ≠ (𝐸 [𝑌 ′] = ⊥)
)︁

:
return 𝐿 [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

return ⊥

DDH(𝑋,𝑌, 𝑍)
assert 𝐸 [𝑋] ≠ ⊥
return 𝑌𝐸 [𝑋] = 𝑍

CLAW(𝑌, 𝑋,𝑌 ′, 𝑋′)
assert 𝐸 [𝑋] ≠ ⊥ ∧ 𝐸 [𝑋 ′] ≠ ⊥
return 𝑌𝐸 [𝑋] = 𝑌 ′𝐸 [𝑋

′]

𝐺
𝑏,𝑔𝑟 𝑝

7

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝐿 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋]∧(︁

(𝐸 [𝑌] = ⊥) ≠ (𝐸 [𝑌 ′] = ⊥)
)︁

:
return 𝐿 [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ← 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return 𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if 𝑌𝐸 [𝑋] = 𝑍 :
return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ← 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return 𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌𝐸 [𝑋] = 𝑍 :
return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

Figure 36: Game 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,grp, reduction R𝑏,grp
𝑐𝑐𝑜𝑙𝑙

, and game 𝐺𝑏,grp
7 for comparison

161

R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡

State

𝑇H : table
𝑇XTR : table

DHGEN()
return DHGEN()

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert DHGET(𝑋) ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′DHGET(𝑋′) = 𝑌DHGET(𝑋) :
return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if 𝑌DHGET(𝑋) = 𝑍 :
if DHGET(𝑌) = ⊥ ∨ ¬𝑏 :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌DHGET(𝑋) = 𝑍 :
if DHGET(𝑌) = ⊥ ∨ ¬𝑏 :

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝐸 : table
𝛼 : integer

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝑥 ←$ 𝑍𝑞

if 𝑏 :
if 𝛼 = ⊥ :
𝛼←$ 𝑍𝑞

𝑒 ← 𝛼𝑥

else :
𝑒 ← 𝑥

𝑋 ← 𝑔𝑒

𝐸 [𝑋] ← 𝑒

return 𝑋

DHGET(𝑋)
return 𝐸 [𝑋]

𝐺
𝑏,𝑔𝑟 𝑝

9

State

𝐸 : table
𝑇H : table
𝑇XTR : table
𝛼 : integer

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
if 𝛼 = ⊥ :
𝛼←$ 𝑍𝑞

𝑥 ←$ 𝑍𝑞

𝑋 ← 𝑔𝛼𝑥

𝐸 [𝑋] ← 𝛼𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
same as the left

H(𝑍, 𝑠𝑎𝑙𝑡)
same as the left

Figure 37: Game 𝐺𝑠𝑡𝑎𝑡𝑏,grp, reduction R𝑏,grp
𝑠𝑡𝑎𝑡 , and game 𝐺𝑏,grp

9 for comparison

162

R𝑏,𝑔𝑟 𝑝
𝑎𝑙 𝑝ℎ𝑎

State

𝐸 : table
𝑇H : table
𝑇XTR : table
𝛼 : integer

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝛼← SAMPLE()
𝑥 ←$ 𝑍𝑞

𝑋 ← (𝑔𝑥)𝛼

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if CHECK(𝑌 ′𝐸 [𝑋′] , 𝑌𝐸 [𝑋]) :
return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if (𝑌𝐸 [𝑋])𝛼 = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if (𝑌𝐸 [𝑋])𝛼 = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝛼 : integer

SAMPLE()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
if 𝛼 = ⊥ :
𝛼←$ 𝑍𝑞

if 𝑏 :
assert 𝛼 ≠ 𝑞

return 𝛼

CHECK(𝑆, 𝑇)
if 𝑏 :

return 𝑆 = 𝑇

return 𝑆𝛼 = 𝑇 𝛼

𝐺
𝑏,𝑔𝑟 𝑝

11

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
if 𝛼 = ⊥ :
𝛼←$ 𝑍𝑞

assert 𝛼 ≠ 𝑞

𝑥 ←$ 𝑍𝑞

𝑋 ← (𝑔𝛼)𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if (𝑌𝐸 [𝑋])𝛼 = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if (𝑌𝐸 [𝑋])𝛼 = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

Figure 38: Game 𝐺𝑎𝑙𝑝ℎ𝑎𝑏,grp, reduction R𝑏,grp
𝑎𝑙 𝑝ℎ𝑎

, and game 𝐺𝑏,grp
11 for comparison

163

As the final step towards proving Theorem 5.2, we reduce SODH to SqDH.

Lemma 5.6 (SqDH implies SODH). Let A be an adversary. Then, there exists PPT
reductions R𝑔𝑟 𝑝, R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 , R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, and R𝑏,𝑔𝑟 𝑝

𝑎𝑙 𝑝ℎ𝑎
such that,

Adv(A, 𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,𝑔𝑟 𝑝) ≤ Adv(A → R𝑔𝑟 𝑝, 𝐺𝑠𝑞𝑑ℎ𝑏,𝑔𝑟 𝑝)
+ Adv(A → R0,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + Adv(A → R1,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

+ Adv(A → R0,𝑔𝑟 𝑝
𝑠𝑡𝑎𝑡 , 𝐺𝑠𝑡𝑎𝑡

𝑏,𝑔𝑟 𝑝) + Adv(A → R1,𝑔𝑟 𝑝
𝑠𝑡𝑎𝑡 , 𝐺𝑠𝑡𝑎𝑡

𝑏,𝑔𝑟 𝑝)
+ Adv(A → R0,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + Adv(A → R1,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

+ Adv(A → R0,𝑔𝑟 𝑝
𝑎𝑙 𝑝ℎ𝑎

, 𝐺𝑎𝑙 𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝) + Adv(A → R1,𝑔𝑟 𝑝
𝑎𝑙 𝑝ℎ𝑎

, 𝐺𝑎𝑙 𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝)

Proof of Theorem 5.2. Theorem follows from application of Lemmata 5.6, 5.1, 5.4,
and 5.3. □

We define the pseudocode of our main reduction R𝑔𝑟 𝑝 in Figure 39 and use
reduction R𝑔𝑟 𝑝 to present the high level idea of the proof of Lemma 5.6.

Proof idea of Lemma 5.6. Having an adversary A breaking the security of SODH
assumption, we want to build an adversaryB to break the security of SqDH assumption.
To this end, we want to simulate SODH game using a reduction R𝑔𝑟 𝑝 interacting with
SqDH game. As a result of a correct simulating reduction R𝑔𝑟 𝑝, we build the new
adversary B := A → R𝑔𝑟 𝑝 as a composition of A and R𝑔𝑟 𝑝. Reduction works as
follows. Receiving a single DH share 𝑔𝛼 from SAMPLE() oracle of SqDH game,
we need to generate as many shares as the adversary requires in SODH game when
calling DHGEN(). We achieve this by sampling a DH share (say 𝑔𝛼 for random
𝛼←$ 𝑍𝑞) by calling SAMPLE() and for each DHGEN() call, we uniformly sample a
fresh random 𝑥 ←$ 𝑍𝑞, store 𝐸 [𝑋] ← 𝑥 for 𝑋 = (𝑔𝛼)𝑥 (instead of 𝐸 [𝑋] ← 𝛼𝑥) and
return (𝑔𝛼)𝑥 to the adversary. Using the group being prime-ordered, we notice that
distribution of 𝑔𝛼𝑥𝑖 for uniform 𝛼 and 𝑥𝑖’s is the same as 𝑔𝑥𝑖 for uniform 𝑥𝑖’s. (See
Lemma 5.4.) However, having stored 𝑥 instead of 𝛼𝑥 in the exponent table, we cannot
compute xtr(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡) when the adversary calls XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡). Instead, taking
advantage of xtr(·, ·) being modeled as a random oracle H(𝑍, 𝑠𝑎𝑙𝑡), we sample a
random bitstring 𝑠←$ {0, 1}len(𝑎𝑙𝑔) and program the random oracle at xtr(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡)
and set the programmed response at𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ← 𝑠. In turn, we need to respond
consistently when the random oracle is queried on H(𝑍, 𝑠𝑎𝑙𝑡) where 𝑍 = 𝑌𝐸 [𝑋] but
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ≠ ⊥ for some group elements 𝑋 and 𝑌 . Interestingly, the consistency
can be checked using the DDH(𝑌, 𝑍) oracle provided by the SqDH game. Furthermore,
we need to make XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡) queries consistent as it is possible for the adversary to
query XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡) and XTR(𝑋′, 𝑌 ′, 𝑠𝑎𝑙𝑡) where 𝑌 ′𝐸 [𝑋 ′] = 𝑌𝐸 [𝑋] . These checks,
however, can be performed when knowing only 𝑥 and 𝑥′ while 𝑋 = 𝑔𝛼𝑥 and 𝑋′ = 𝑔𝛼𝑥′

since 𝑌 ′𝑥′ = 𝑌 𝑥 is implied by 𝑌 ′𝛼𝑥′ = 𝑌𝛼𝑥 in a prime-ordered group except when
𝛼 = 𝑞, which is chosen with probability 1

𝑞
. (See Lemma 5.3.) Notice that if all shares

𝑋,𝑌, 𝑋′, 𝑌 ′ are honest but {𝑋,𝑌 } ≠ {𝑋′, 𝑌 ′} (i.e. dh⟨sort(𝑋,𝑌)⟩ ≠ dh⟨sort(𝑌, 𝑋)⟩),
XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡) and XTR(𝑋′, 𝑌 ′, 𝑠𝑎𝑙𝑡) both sample a new string and they are only

164

R𝑔𝑟 𝑝

Parameters

𝑔𝑟 𝑝 : group description

State

𝐸 : table
𝑇H : table
𝑇XTR : table
𝐴 : group element

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝐴←$ SAMPLE()
assert 𝐴 ≠ 𝑔𝑞

𝑥 ←$ 𝑍𝑞

𝑋 ← 𝐴𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if DDH(𝑌𝐸 [𝑋] , 𝑍) :

if 𝐸 [𝑌] = ⊥ ∨ ¬CHECK(𝑍𝐸 [𝑋]−1𝐸 [𝑌]−1) :
return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if DDH(𝑌𝐸 [𝑋] , 𝑍) :

if 𝐸 [𝑌] = ⊥ ∨ ¬CHECK(𝑍𝐸 [𝑋]−1𝐸 [𝑌]−1) :
return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

Figure 39: Code of reduction R𝑔𝑟 𝑝

165

the same with probability 1
2len(𝑎𝑙𝑔) . Therefore, the outputs are inconsistent and this

can be exploited by the adversary. We bound the probability of such a collision
(𝑌 ′𝐸 [𝑋 ′] = 𝑌𝐸 [𝑋]) of honest shares 𝑋,𝑌, 𝑋′, 𝑌 ′ in Lemma 5.1. Furthermore, notice
when reducing to𝐺𝑠𝑞𝑑ℎ, we wish to transfer the distinguishing power of the adversary
in the𝐺𝑠𝑜𝑑ℎ𝑟𝑜 game to𝐺𝑠𝑞𝑑ℎ. However, the adversary in 𝐺𝑠𝑜𝑑ℎ𝑟𝑜 might also have
and advantage without calling the random oracle on the desired Diffie-Hellman secret.
To see this, imagine the adversary queries XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡) and XTR(𝑋′, 𝑌 ′, 𝑠𝑎𝑙𝑡) for
honest 𝑋,𝑌, 𝑋′ but dishonest 𝑌 ′ such that 𝑌 ′𝐸 [𝑋 ′] = 𝑌𝐸 [𝑋] . (i.e. 𝑋,𝑌 has the same DH
secret as 𝑋′, 𝑌 ′ but 𝑌 ′ is under adversarial control.) In the ideal game, outputs of these
calls are different with high probability. We eliminate this case by reducing to game
𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝. □

Formal proof of Lemma 5.6. We bound the advantage of an adversary interacting with
game 𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,𝑔𝑟 𝑝 through a game-hopping argument. We define the pseudocode
of hybrid games 𝐺𝑏,𝑔𝑟 𝑝

𝑖
for 𝑖 ∈ [11] in Figures 40 to 43. Observe that 𝐺𝑏,𝑔𝑟 𝑝

1
𝑐𝑜𝑑𝑒≡

𝐺𝑠𝑜𝑑ℎ𝑟𝑜𝑏,𝑔𝑟 𝑝. We also define pseudocode of reductions R𝑏,𝑔𝑟 𝑝
ℎ𝑐𝑜𝑙𝑙

, R𝑏,𝑔𝑟 𝑝
𝑐𝑐𝑜𝑙𝑙

, R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 , and
R𝑏,𝑔𝑟 𝑝
𝑎𝑙 𝑝ℎ𝑎

in Figures 35, 36, 37, and 38, respectively. Informally, we prove the following
chain of game hops: (game parameters are not shown)

𝐺1
𝑐𝑜𝑑𝑒≡ 𝐺2

𝑐𝑜𝑚𝑝
≈ 𝐺3

𝑐𝑜𝑑𝑒≡ 𝐺4
𝑐𝑜𝑑𝑒≡ 𝐺5

𝑐𝑜𝑑𝑒≡ 𝐺6
𝑐𝑜𝑚𝑝
≈ 𝐺7

𝑐𝑜𝑑𝑒≡ 𝐺8
𝑠𝑡𝑎𝑡≈ 𝐺9

𝑐𝑜𝑑𝑒≡ 𝐺10
𝑐𝑜𝑚𝑝
≈ 𝐺11

To formally prove the chain of the game hops, we need the following lemma for
computational and statistical game hops:

Lemma 5.7. Let A be an adversary and for 𝑏 ∈ {0, 1}, 𝐺𝑏
0
𝑐𝑜𝑑𝑒≡ R𝑏 → 𝐻0 and

𝐺𝑏
1
𝑐𝑜𝑑𝑒≡ R𝑏 → 𝐻1 for games 𝐺𝑏

0 , 𝐺
𝑏
1 , 𝐻

0, 𝐻1 and reduction R𝑏. Then,

Adv(A, 𝐺𝑏
0) ≤ Adv(A, 𝐺𝑏

1) + Adv(A → R0, 𝐻𝑏) + Adv(A → R1, 𝐻𝑏).

Proof.

Adv(A, 𝐺𝑏
0) = | Pr

[︁
1 = A → (R0 → 𝐻0)

]︁
− Pr

[︁
1 = A → (R1 → 𝐻0)

]︁
|

= | Pr
[︁
1 = (A → R0) → 𝐻0]︁ − Pr

[︁
1 = (A → R0) → 𝐻1]︁

+ Pr
[︁
1 = A → (R0 → 𝐻1)

]︁
− Pr

[︁
1 = A → (R1 → 𝐻1)

]︁
+ Pr

[︁
1 = (A → R1) → 𝐻1]︁ − Pr

[︁
1 = (A → R1) → 𝐻0]︁ |

≤ Adv(A → R0, 𝐻𝑏)
+ Adv(A,R𝑏 → 𝐻1)
+ Adv(A → R1, 𝐻𝑏).

□

Next, we prove the following code equivalences used by computational and
statistical game hops.

166

Claim 5.8 (Reductions).

𝐺
𝑏,𝑔𝑟 𝑝

2
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
→ 𝐺ℎ𝑐𝑜𝑙𝑙0,𝑔𝑟 𝑝,

𝐺
𝑏,𝑔𝑟 𝑝

3
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
→ 𝐺ℎ𝑐𝑜𝑙𝑙1,𝑔𝑟 𝑝,

𝐺
𝑏,𝑔𝑟 𝑝

6
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
→ 𝐺𝑐𝑐𝑜𝑙𝑙0,𝑔𝑟 𝑝,

𝐺
𝑏,𝑔𝑟 𝑝

7
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
→ 𝐺𝑐𝑐𝑜𝑙𝑙1,𝑔𝑟 𝑝,

𝐺
𝑏,𝑔𝑟 𝑝

8
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 → 𝐺𝑠𝑡𝑎𝑡0,𝑔𝑟 𝑝,

𝐺
𝑏,𝑔𝑟 𝑝

9
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 → 𝐺𝑠𝑡𝑎𝑡1,𝑔𝑟 𝑝,

𝐺
𝑏,𝑔𝑟 𝑝

10
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝

𝑎𝑙 𝑝ℎ𝑎
→ 𝐺𝑎𝑙𝑝ℎ𝑎0,𝑔𝑟 𝑝,

𝐺
𝑏,𝑔𝑟 𝑝

11
𝑐𝑜𝑑𝑒≡ R𝑏,𝑔𝑟 𝑝

𝑎𝑙 𝑝ℎ𝑎
→ 𝐺𝑎𝑙𝑝ℎ𝑎1,𝑔𝑟 𝑝 .

Proof. All code equivalences can be simply proved by inlining the code of oracles of the
games 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝, 𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝, and 𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝 in the reductions. □

In the following, we elaborate on changes in each game hop. In Figure 40
to 43, we might remove redundant assertions or variable assignments as a result
of inlining. We also use foreach (𝑋′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇 ′ for all tables 𝑇 ′ instead of
foreach (𝑋′, 𝑌 ′, 𝑠𝑎𝑙𝑡′) in 𝑇 ′ : if 𝑠𝑎𝑙𝑡′ = 𝑠𝑎𝑙𝑡 : where 𝑠𝑎𝑙𝑡 is given as an argument.
(i.e. we lookup for entries in the table with the given 𝑠𝑎𝑙𝑡.) We use red lines to indicate
changes from previous game. We use cyan, violet, brown, and green lines to show
correspondence between adjacent columns.

Claim 5.9. 𝐺1
𝑐𝑜𝑑𝑒≡ 𝐺2.

Proof. From 𝐺1 to 𝐺2, we replace 𝑆[ℎ, 𝑠𝑎𝑙𝑡] with 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] and before sampling
a new value for 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡], check whether 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] or 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡] has been
already set before. This is one implementation for semantics of dh⟨sort(𝑋,𝑌)⟩. □

Claim 5.10. 𝐺2
𝑐𝑜𝑚𝑝
≈ 𝐺3.

Proof. From 𝐺2 to 𝐺3, we reduce to indistinguishability of game 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝 (honest
collisions) with reduction R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
. Advantage of an adversary in game 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝 is

bounded in Lemma 5.1. □

Claim 5.11. 𝐺3
𝑐𝑜𝑑𝑒≡ 𝐺4.

Proof. From 𝐺3 to 𝐺4, we merge the foreach loop and the following if conditions
into one loop by dropping the codition {𝑋,𝑌 } ≠ {𝑋′, 𝑌 ′}. □

Claim 5.12. 𝐺4
𝑐𝑜𝑑𝑒≡ 𝐺5.

Proof. From 𝐺4 to 𝐺5, we inline the code of H in XTR. □

167

Claim 5.13. 𝐺5
𝑐𝑜𝑑𝑒≡ 𝐺6.

Proof. From 𝐺5 to 𝐺6, we replace the functionality provided by a common table
𝑇 between the random oracle H and XTR with two tables 𝑇H and 𝑇XTR which are
viewpoints of each oracle about hash values of group members (DH secrets) and salts.
They store hash values corresponding to their inputs. It is required that the behaviour
of two tables be consistent with one table 𝑇 . This is achieved by iterating over values
in the other table (𝑇XTR in oracle H and 𝑇H in oracle XTR) and returning appropriate
value upon a related input. The consistency of calls to XTR is acheived by iterating
over 𝑇XTR and checking for a collision 𝑌 ′𝐸 [𝑋 ′] = 𝑌𝐸 [𝑋] . The consistency of calls to H
is ensured by looking up the input in 𝑇H in the very beginning of code of oracle H.

We formally prove and verify the code equivalence in SSBee by separating the
common table 𝑇 logic and reducing 𝐺5 and 𝐺6 with reduction R56 to 𝐺′5 and 𝐺′6
such that 𝐺5

𝑐𝑜𝑑𝑒≡ R56 → 𝐺′5 and 𝐺6
𝑐𝑜𝑑𝑒≡ R56 → 𝐺′6 and formally verifying code

equivalence of 𝐺′5 and 𝐺′6 in SSBee. Notice that in the code of 𝐺′6, looking up 𝑌𝐸 [𝑋]
in 𝑇H is the same as iterating over the table to find a matching entry. (Since SSBee does
not support iteration control statements, we reduce the loops to absolutely necessary
ones.) We discuss the required invariants in Lemma 5.20. Refer to Figure 44 for code
of reduction R56 and games 𝐺′5 and 𝐺′6.

Observe that in the ideal game (i.e. 𝐺𝑏=1
6), 𝑆 stores hash values for only honest 𝑌 ’s

and𝑇XTR stores hash values for only dishonest𝑌 ’s. Therefore, the two loops for looking
for possible collisions of the form 𝑌 ′𝐸 [𝑋

′] = 𝑌𝐸 [𝑋] , find collisions between either only
honest shares or only dishonest shares. However, observe that the reduction R𝑔𝑟 𝑝
checks for all collisions (including possibly those between honest and dishonest shares)
in the very beginning because the sets 𝑆 and 𝑇XTR are merged and 𝑇XTR contains both
honest and dishonest shares. Hence, we introduce table 𝐿 to enable us to check for all
collisions before merging 𝑆 and 𝑇XTR. This requires us to reduce to game 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝
(cross collisions). □

Claim 5.14. 𝐺6
𝑐𝑜𝑚𝑝
≈ 𝐺7.

Proof. From𝐺6 to𝐺7, we reduce to indistinguishability of𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝 with reduction
R𝑏,𝑔𝑟 𝑝
𝑐𝑐𝑜𝑙𝑙

and prevent all cross collisions in the beginning. Notice that the foreach loop
in the code of oracle FIND provided by the game checks for collisions only between
honest and dishonest shares with the additional condition

(︁
(𝐸𝑌 = ⊥) ≠ (𝐸𝑌 ′ = ⊥)

)︁
.

This conditions states that honesty of 𝑌 and 𝑌 ′ shall not be the same or in other words,
exactly one of 𝑌 or 𝑌 ′ should be dishonest. Therefore, in the game 𝐺𝑏,𝑔𝑟 𝑝

7 where
𝐺𝑐𝑐𝑜𝑙𝑙1,𝑔𝑟 𝑝 is idealized, all possible collisions among honest shares only, dishonest
shares only, and between honest and dishonest shares are captured with these three
foreach loops which can be all merged together in one loop in 𝐺𝑏,𝑔𝑟 𝑝

8 . □

Claim 5.15. 𝐺7
𝑐𝑜𝑑𝑒≡ 𝐺8.

Proof. From𝐺7 to𝐺8, we merge tables 𝑆 and𝑇XTR and reuse 𝑇XTR for lookups instead
of 𝐿. This requires taking into account the game parameter 𝑏 in the code of oracle

168

H. We shall not return the same hash value as sampled by XTR oracle in the ideal
games for honest 𝑌 ’s. We also merge the foreach loops that lookup values in 𝑆, 𝐿,
and 𝑇XTR. Observe that this makes a difference between idealized games 𝐺1,𝑔𝑟 𝑝

7 and
𝐺

1,𝑔𝑟 𝑝
8 while the real games 𝐺0,𝑔𝑟 𝑝

7 and 𝐺0,𝑔𝑟 𝑝
8 are excatly the same as all shares are

stored in 𝑇XTR and the loop over this table captures all collisions. □

Claim 5.16. 𝐺8
𝑠𝑡𝑎𝑡≈ 𝐺9.

Proof. From 𝐺8 to 𝐺9, we reduce to indistinguishability of game 𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝 with
reduction R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 . Advantage of any adversary in game 𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝 is 0 as proved in
Lemma 5.4. □

Claim 5.17. 𝐺9
𝑐𝑜𝑑𝑒≡ 𝐺10.

Proof. From 𝐺9 to 𝐺10, we replace 𝐸 [𝑋] ← 𝛼𝑥 with 𝐸 [𝑋] ← 𝑥 and update
operations. □

Claim 5.18. 𝐺10
𝑐𝑜𝑑𝑒≈ 𝐺11.

Proof. From 𝐺10 to 𝐺11, we reduce to indistinguishability of game 𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝
and replace (𝑌 ′𝐸 [𝑋 ′])𝛼 = (𝑌𝐸 [𝑋])𝛼 with 𝑌 ′𝐸 [𝑋 ′] = 𝑌𝐸 [𝑋] while adding an assertion
after sampling 𝛼 to avoid trivial value 𝛼 = 𝑞. Advantage of an adversary in game
𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝 is bounded in Lemma 5.3. □

Claim 5.19. 𝐺𝑏,𝑔𝑟 𝑝

11
𝑐𝑜𝑑𝑒≡ R𝑔𝑟 𝑝 → 𝐺𝑠𝑞𝑑ℎ𝑏,𝑔𝑟 𝑝.

Proof. Finally, game𝐺11 is exactly the composition of reductionR𝑔𝑟 𝑝 with𝐺𝑠𝑞𝑑ℎ𝑏,𝑔𝑟 𝑝.
We use the oracles provided by game 𝐺𝑠𝑞𝑑ℎ𝑏,𝑔𝑟 𝑝. See colored lines in Figure 43.
Notice 𝑏 can be safely replaced with CHECK(𝑍𝐸 [𝑋]−1𝐸 [𝑌]−1) oracle because at that
point we know 𝑍 = 𝑌𝛼𝐸 [𝑋] = 𝑔𝐸 [𝑋]𝐸 [𝑌]𝛼

2 , considering short circuit semantics of the
if condition evaluation. □

In the following, we abuse the notation and, for example, write 2 × Adv(A →
R𝑏,𝑔𝑟 𝑝
ℎ𝑐𝑜𝑙𝑙

, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) insteadofAdv(A → R0,𝑔𝑟 𝑝
ℎ𝑐𝑜𝑙𝑙

, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)+Adv(A → R1,𝑔𝑟 𝑝
ℎ𝑐𝑜𝑙𝑙

, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝).

169

Now by applying lemma 5.7 to the code equivalences in Claim 5.8 and 5.19, we get

Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

0) = Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

2)
≤ Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

3)
+ Adv(A → R0,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + Adv(A → R1,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

= Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

6) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝
ℎ𝑐𝑜𝑙𝑙

, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)
≤ Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

7)
+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

= Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

8)
+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

= Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

9)
+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 , 𝐺𝑠𝑡𝑎𝑡
𝑏,𝑔𝑟 𝑝)

= Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

10)
+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 , 𝐺𝑠𝑡𝑎𝑡
𝑏,𝑔𝑟 𝑝)

= Adv(A, 𝐺𝑏,𝑔𝑟 𝑝

11)
+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 , 𝐺𝑠𝑡𝑎𝑡
𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑎𝑙 𝑝ℎ𝑎
, 𝐺𝑎𝑙 𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝)

= Adv(A → R𝑔𝑟 𝑝, 𝐺𝑠𝑞𝑑ℎ𝑏,𝑔𝑟 𝑝)
+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

ℎ𝑐𝑜𝑙𝑙
, 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑐𝑐𝑜𝑙𝑙
, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝)

+ 2 × Adv(A → R𝑏,𝑔𝑟 𝑝𝑠𝑡𝑎𝑡 , 𝐺𝑠𝑡𝑎𝑡
𝑏,𝑔𝑟 𝑝) + 2 × Adv(A → R𝑏,𝑔𝑟 𝑝

𝑎𝑙 𝑝ℎ𝑎
, 𝐺𝑎𝑙 𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝).

□

Lemma 5.20. 𝐺′5
𝑐𝑜𝑑𝑒≡ 𝐺′6. (verified in SSBee)

Proof. In the following, we introduce three state relations (observations) as necessary
conditions for equivalence, which turn out to be sufficient too. Then, as discussed
in Section 2.1 and 2.5, we formally prove code equivalence of the games, using an
induction over the oracle calls to show three properties for each oracle. Firstly, on the
same inputs to corresponding oracles from left (𝐺′5) and right (𝐺′6) games, our state
relations are preserved across the calls and, hence, are invariants. Secondly, again on
the same inputs, either both of the oracles abort or neither abort. Thirdly, on the same
inputs, if the oracles do not abort, they return the same output.

170

𝐺
𝑏,𝑔𝑟 𝑝

1

Parameters

𝑏 : idealization bit
𝑔𝑟 𝑝 : group description

State

𝐸 : table
𝑆 : table
𝑇 : table

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝑥 ←$ 𝑍𝑞

𝑋 ← 𝑔𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :
ℎ← dh⟨sort(𝑋,𝑌)⟩
if 𝑆[ℎ, 𝑠𝑎𝑙𝑡] = ⊥ :

𝑆[ℎ, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[ℎ, 𝑠𝑎𝑙𝑡]
return H(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡)

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

𝐺
𝑏,𝑔𝑟 𝑝

2

Parameters

same as the left

State

same as the left

DHGEN()
same as the left

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

if 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]

if 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡]

𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return H(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡)

H(𝑍, 𝑠𝑎𝑙𝑡)
same as the left

𝐺
𝑏,𝑔𝑟 𝑝

3

Parameters

same as the left

State

same as the left

DHGEN()
same as the left

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋]∧

{𝑋,𝑌 } ≠ {𝑋 ′, 𝑌 ′} :
return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

if 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]

if 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑆[𝑌, 𝑋, 𝑠𝑎𝑙𝑡]

𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return H(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡)

H(𝑍, 𝑠𝑎𝑙𝑡)
same as the left

Figure 40: Games 𝐺𝑏,𝑔𝑟 𝑝

1 , 𝐺𝑏,𝑔𝑟 𝑝

2 , 𝐺𝑏,𝑔𝑟 𝑝

3

171

𝐺
𝑏,𝑔𝑟 𝑝

4

Parameters

same as 𝐺𝑏,𝑔𝑟 𝑝

3

State

same as 𝐺𝑏,𝑔𝑟 𝑝

3

DHGEN()
same as 𝐺𝑏,𝑔𝑟 𝑝

3

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return H(𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡)

H(𝑍, 𝑠𝑎𝑙𝑡)
// no change, repeated for comparison

if 𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

𝐺
𝑏,𝑔𝑟 𝑝

5

Parameters

same as the left

State

// no change, repeated for comparison

𝐸 : table
𝑆 : table
𝑇 : table

DHGEN()
same as the left

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
if 𝑇 [𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇 [𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡]
𝑇 [𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇 [𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
same as the left

𝐺
𝑏,𝑔𝑟 𝑝

6

State

𝐸 : table
𝑆 : table
𝑇H : table
𝑇XTR : table

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if 𝑌𝐸 [𝑋] = 𝑍 :
return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌𝐸 [𝑋] = 𝑍 :
return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

Figure 41: Games 𝐺𝑏,𝑔𝑟 𝑝

4 , 𝐺𝑏,𝑔𝑟 𝑝

5 , 𝐺𝑏,𝑔𝑟 𝑝

6

172

𝐺
𝑏,𝑔𝑟 𝑝

7

State

𝐸 : table
𝑆 : table
𝐿 : table
𝑇H : table
𝑇XTR : table

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝐿 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋]∧(︁
(𝐸 [𝑌] = ⊥) ≠ (𝐸 [𝑌 ′] = ⊥)

)︁
:

return 𝐿 [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ 𝐸 [𝑌] ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ← 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return 𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if 𝑌𝐸 [𝑋] = 𝑍 :
return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ← 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return 𝐿 [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
same as 𝐺𝑏,𝑔𝑟 𝑝

6

𝐺
𝑏,𝑔𝑟 𝑝

8

State

𝐸 : table
𝑇H : table
𝑇XTR : table

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if 𝑌𝐸 [𝑋] = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌𝐸 [𝑋] = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝐺
𝑏,𝑔𝑟 𝑝

9

State

𝐸 : table
𝑇H : table
𝑇XTR : table
𝛼 : integer

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
if 𝛼 = ⊥ :
𝛼←$ 𝑍𝑞

𝑥 ←$ 𝑍𝑞

𝑋 ← 𝑔𝛼𝑥

𝐸 [𝑋] ← 𝛼𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
same as the left

H(𝑍, 𝑠𝑎𝑙𝑡)
same as the left

Figure 42: Games 𝐺𝑏,𝑔𝑟 𝑝

7 , 𝐺𝑏,𝑔𝑟 𝑝

8 , 𝐺𝑏,𝑔𝑟 𝑝

9

173

𝐺
𝑏,𝑔𝑟 𝑝

10

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
if 𝛼 = ⊥ :
𝛼←$ 𝑍𝑞

𝑥 ←$ 𝑍𝑞

𝑋 ← (𝑔𝑥)𝛼

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if (𝑌 ′𝐸 [𝑋′])𝛼 = (𝑌𝐸 [𝑋])𝛼 :
return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if (𝑌𝐸 [𝑋])𝛼 = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if (𝑌𝐸 [𝑋])𝛼 = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝐺
𝑏,𝑔𝑟 𝑝

11

State

𝐸 : table
𝑇H : table
𝑇XTR : table
𝛼 : integer

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
if 𝛼 = ⊥ :
𝛼←$ 𝑍𝑞

assert 𝛼 ≠ 𝑞

𝑥 ←$ 𝑍𝑞

𝑋 ← (𝑔𝛼)𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if (𝑌𝐸 [𝑋])𝛼 = 𝑍 :
if 𝐸 [𝑌] = ⊥ ∨ ¬𝑏 :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
same as the left

R𝑔𝑟 𝑝

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝐴←$ SAMPLE()
assert 𝐴 ≠ 𝑔𝑞

𝑥 ←$ 𝑍𝑞

𝑋 ← 𝐴𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert 𝐸 [𝑋] ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑍, 𝑠𝑎𝑙𝑡) in 𝑇H :

if DDH(𝑌𝐸 [𝑋] , 𝑍) :
if 𝐸 [𝑌] = ⊥∨

¬CHECK(𝑍𝐸 [𝑋]−1𝐸 [𝑌]−1) :
return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

H(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if DDH(𝑌𝐸 [𝑋] , 𝑍) :
if 𝐸 [𝑌] = ⊥∨

¬CHECK(𝑍𝐸 [𝑋]−1𝐸 [𝑌]−1) :
return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

Figure 43: Games 𝐺𝑏,𝑔𝑟 𝑝

10 , 𝐺𝑏,𝑔𝑟 𝑝

11 . Reduction R𝑔𝑟 𝑝 is repeated for comparison.174

R𝑏,𝑔𝑟 𝑝56

State

𝑆 : table

DHGEN()
return DHGEN()

XTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
assert DHGET(𝑋) ≠ ⊥∧

grp(𝑋) = grp(𝑌) = 𝑔𝑟 𝑝∧
alg(𝑠𝑎𝑙𝑡) ∈ H

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
if 𝑏 ∧ DHGET(𝑌) ≠ ⊥ :

foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑆 :

if 𝑌 ′DHGET(𝑋′) = 𝑌DHGET(𝑋) :
return 𝑆[𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]

𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡]
return TXTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)

H(𝑍, 𝑠𝑎𝑙𝑡)
return TH(𝑍, 𝑠𝑎𝑙𝑡)

𝐺′5

Parameters

𝑔𝑟 𝑝 : group description

State

𝑇 : table
𝐸 : table

DHGEN()
𝑔 ← gen(𝑔𝑟 𝑝)
𝑞 ← ord(𝑔)
𝑥 ←$ 𝑍𝑞

𝑋 ← 𝑔𝑥

𝐸 [𝑋] ← 𝑥

return 𝑋

DHGET(𝑋)
return 𝐸 [𝑋]

TXTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
𝑍 ← 𝑌𝐸 [𝑋]

if 𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :
return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

TH(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]
𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇 [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇 [𝑍, 𝑠𝑎𝑙𝑡]

𝐺′6

Parameters

𝑔𝑟 𝑝 : group description

State

𝑇H : table
𝑇XTR : table
𝐸 : table

DHGEN()
same as the left

DHGET(𝑋)
same as the left

TXTR(𝑋,𝑌, 𝑠𝑎𝑙𝑡)
foreach (𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌 ′𝐸 [𝑋
′] = 𝑌𝐸 [𝑋] :

return 𝑇XTR [𝑋 ′, 𝑌 ′, 𝑠𝑎𝑙𝑡]
if 𝑇H [𝑌𝐸 [𝑋] , 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

TH(𝑍, 𝑠𝑎𝑙𝑡)
if 𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ≠ ⊥ :

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]
foreach (𝑋,𝑌, 𝑠𝑎𝑙𝑡) in 𝑇XTR :

if 𝑌𝐸 [𝑋] = 𝑍 :
return 𝑇XTR [𝑋,𝑌, 𝑠𝑎𝑙𝑡]

𝑎𝑙𝑔 ← alg(𝑠𝑎𝑙𝑡)
𝑇H [𝑍, 𝑠𝑎𝑙𝑡] ←$ {0, 1}len(𝑎𝑙𝑔)

return 𝑇H [𝑍, 𝑠𝑎𝑙𝑡]

Figure 44: Games 𝐺′5 and 𝐺′6, reduction R𝑏,𝑔𝑟 𝑝56

175

Intuitively, the state relations are as follows:

𝐸 := 𝐸𝐺′5 = 𝐸𝐺′6 .

∀𝑋,𝑌, 𝑠, ℎ
(︁
𝑇XTR [𝑋,𝑌, 𝑠] = ℎ ≠ ⊥ ⇒ 𝑇 [𝑌𝐸 [𝑋] , 𝑠] = ℎ

)︁
.

∀𝑍, 𝑠, ℎ
(︁
𝑇H [𝑍, 𝑠] = ℎ ≠ ⊥ ⇒ 𝑇 [𝑍, 𝑠] = ℎ

)︁
.

∀𝑍, 𝑠, ℎ
(︂
𝑇 [𝑍, 𝑠] = ℎ ≠ ⊥ ⇒ (𝑇H [𝑍, 𝑠] = ℎ ∨ ∃𝑋,𝑌 . 𝑇XTR [𝑋,𝑌, 𝑠] = ℎ ∧ 𝑌𝐸 [𝑋] = 𝑍)

)︂
.

Namely, exponent tables 𝐸𝐺′5 and 𝐸𝐺′6 should be the same because of the same
code for DHGEN oracle, which results in the first relation. We also expect that
whenever an entry is inserted in tables 𝑇XTR [𝑋,𝑌, 𝑠] or 𝑇H [𝑍, 𝑠] of game 𝐺′6, there
is a corresponding entry in table 𝑇 of game 𝐺′5, which gives us the second two
relations. Conversely, for any entry inserted in table 𝑇 of game 𝐺′5, we expect there
is a corresponding entry either in table 𝑇XTR [𝑋,𝑌, 𝑠] or 𝑇H [𝑍, 𝑠] of game 𝐺′6, which
gives us the last relation.

We prove these state relations to be invariant and they turn out to be sufficient to
prove the equivalence. However, since SSBee does not support any iteration control
statements (i.e. loops), we encode the lookup loops in game 𝐺′6 inspired by the epsilon
operator in Hilbert’s epsilon calculus [AZ24]. Precisely, we define an abstract function
in SSBee that performs the lookup in table 𝑇XTR [𝑋,𝑌, 𝑠] to find a pair (𝑋′, 𝑌 ′) such
that 𝑌𝐸 [𝑋] = 𝑌 ′𝐸 [𝑋 ′] or returns ⊥ if there is no such pair in the table. We exactly
specify these properties for the function and use it as a lemma for code equivalence
proof obligations. Let the abstract function be 𝜖 . We require the following properties
for 𝜖 :

∀𝑇 ′, 𝑍, 𝑠.
(︂
𝜖 (𝑇 ′, 𝑍, 𝑠) = ⊥ ⇔ (∀𝑋,𝑌 . 𝑇 ′[𝑋,𝑌, 𝑠] ≠ ⊥ ⇒ 𝑍 ≠ 𝑌𝐸 [𝑋])

)︂
.

∀𝑇 ′, 𝑍, 𝑠.
(︂
(𝑋,𝑌) := 𝜖 (𝑇 ′, 𝑍, 𝑠) ≠ ⊥ ⇒ (𝑍 = 𝑌𝐸 [𝑋] ∧ 𝑇 ′[𝑋,𝑌, 𝑠] ≠ ⊥)

)︂
.

∀𝑇 ′, 𝑋,𝑌 , 𝑠.
(︂
𝑇 ′[𝑋,𝑌, 𝑠] ≠ ⊥ ⇒ 𝜖 (𝑇 ′, 𝑌𝐸 [𝑋] , 𝑠) = (𝑋,𝑌)

)︂
.

The first relation state a necessary and sufficient condition when 𝜖 returns ⊥. (i.e.
when no pair (𝑋,𝑌) collides with 𝑍) The second relation states a necessary condition
for the output of 𝜖 that when 𝜖 returns a pair, it is indeed a collision and it exists in the
table. The last relation states a sufficient condition for what is returned by 𝜖 . Notice
that for the function to be well-defined, we need to show that for each group memebr 𝑍
and salt 𝑠, there can be at most one pair (𝑋,𝑌) in the table such that 𝑇 ′[𝑋,𝑌, 𝑠] ≠ ⊥
and 𝑌𝐸 [𝑋] = 𝑍 . We refer to this property in our game as uniqueness. Observe that
assuming 𝜖 is a mathematical function (which is the case for abstract functions in
SSBee or SMT solvers), the uniqueness property is implicit and implied by the last
relation. Uniqueness property is stated as follows:

∀𝑇 ′, 𝑋,𝑌 , 𝑠.
(︂
𝑇 ′[𝑋,𝑌, 𝑠] ≠ ⊥ ⇒

(︁
∀𝑋′, 𝑌 ′. 𝑇 ′[𝑋′, 𝑌 ′, 𝑠] ≠ ⊥∧𝑌 ′𝐸 [𝑋 ′] = 𝑌𝐸 [𝑋] ⇒ 𝑋 = 𝑋′∧𝑌 = 𝑌 ′

)︁)︂
176

We prove the uniqueness property in SSBee assuming that if 𝜖 returns ⊥, there is
no colliding pair in the table. (direction⇒ of the first relation) Notice that we do not
assume (as we should not) the other direction (what is returned when there is at least
one colliding pair) to prove the uniqueness. Another formulation is to allow 𝜖 to be a
partial function and define the last relation as follows so that 𝜖 (𝑇 ′, 𝑌𝐸 [𝑋] , 𝑠) is defined
if there is exactly one colliding pair in the table. Then, uniqueness property simply
states that the function is total.

∀𝑇 ′, 𝑍, 𝑠.
(︂ (︁
∃!𝑋,𝑌 . 𝑇 ′[𝑋,𝑌, 𝑠] ≠ ⊥ ∧ 𝑍 = 𝑌𝐸 [𝑋]

)︁
⇒ 𝜖 (𝑇 ′, 𝑍, 𝑠) ≠ ⊥

)︂
.

However, we do not state the relation with uniqueness quantification (as above),
but rather prove the uniqueness separately for our verification to be sound. Moreover,
we leave the lemma about properties of 𝜖 without proof. Generally speaking, modeling
a lookup loop as a determinitic function of table and lookup key requires specification
of an iteration order or proving that the pair if exists is unique. In fact one can prove
the lemma in a program verification tool that supports program logic for the loop.
Therefore, using the uniqueness property as a precondition for the loop, one can prove
the aforementioned properties in the tool.

Since we have automatized the code equivalence proof, we refer the reader to
the code of packages g5P and g6P as well as proof file and invariants file in Listings
13 to 17. Refer to [Raj25d] for the full SSBee project. Notice that 𝜖 is called
find_collision_in_TXTR in the code of package g6P. Also, we have refrained from
defining oracle DHGEN as it is tangent to the core logic of the games. We, though,
keep the invariant 𝐸𝐺′5 = 𝐸𝐺′6 because it is necessary for proving obligations related
to oracles TXTR and TH.

1 package g5P {

2 state {

3 E: Table(Bits(*), Integer),

4 T: Table((Bits(*), Bits(*)), Bits(*)),

5 }

6

7 params {

8 exp: fn Bits(*), Integer -> Bits(*)

9 }

10

11 oracle TXTR(X: Bits(*), Y: Bits(*), s: Bits(*)) -> Bits(*) {

12 Z <- exp(Y, Unwrap(E[X]));

13 if (T[(Z, s)] != None as Bits(*)) {

14 < return Unwrap(T[(Z, s)]);

15 }

16 h <-$ Bits(*);

17 T[(Z, s)] <- Some(h);

18 return h;

19 }

20

21 oracle TH(Z: Bits(*), s: Bits(*)) -> Bits(*) {

22 if (T[(Z, s)] != None as Bits(*)) {

23 return Unwrap(T[(Z, s)]);

24 }

177

25 h <-$ Bits(*);

26 T[(Z, s)] <- Some(h);

27 return h;

28 }

29 }

Listing 13: Code of package g5P

1 package g6P {

2 state {

3 E: Table(Bits(*), Integer),

4 TH: Table((Bits(*), Bits(*)), Bits(*)),

5 TXTR: Table((Bits(*), Bits(*), Bits(*)), Bits(*)),

6 }

7

8 params {

9 exp: fn Bits(*), Integer -> Bits(*),

10 find_collision_in_TXTR:

11 fn Table((Bits(*), Bits(*), Bits(*)), Bits(*)),

12 Bits(*),

13 Bits(*) -> Maybe((Bits(*), Bits(*)))

14 }

15

16 oracle TXTR(X: Bits(*), Y: Bits(*), s: Bits(*)) -> Bits(*) {

17 Z <- exp(Y, Unwrap(E[X]));

18 if (TH[(Z, s)] != None as Bits(*)) {

19 return Unwrap(TH[(Z, s)]);

20 }

21 XpYp <- find_collision_in_TXTR(TXTR, Z, s);

22 if (XpYp != None as (Bits(*), Bits(*))) {

23 (Xp, Yp) <- parse Unwrap(XpYp);

24 return Unwrap(TXTR[(Xp, Yp, s)]);

25 }

26 h <-$ Bits(*);

27 TXTR[(X, Y, s)] <- Some(h);

28 return h;

29 }

30

31 oracle TH(Z: Bits(*), s: Bits(*)) -> Bits(*) {

32 if (TH[(Z, s)] != None as Bits(*)) {

33 return Unwrap(TH[(Z, s)]);

34 }

35 XY <- find_collision_in_TXTR(TXTR, Z, s);

36 if (XY != None as (Bits(*), Bits(*))) {

37 (X, Y) <- parse Unwrap(XY);

38 return Unwrap(TXTR[(X, Y, s)]);

39 }

40 h <-$ Bits(*);

41 TH[(Z, s)] <- Some(h);

42 return h;

43 }

44 }

Listing 14: Code of package g6P

178

1 composition G5 {

2 const exp: fn Bits(*), Integer -> Bits(*);

3

4 instance g5 = g5P {

5 params {

6 exp: exp

7 }

8 }

9

10 compose {

11 adversary: {

12 TH: g5,

13 TXTR: g5

14 }

15 }

16 }

17 composition G6 {

18 const exp: fn Bits(*), Integer -> Bits(*);

19 const find_collision_in_TXTR:

20 fn Table((Bits(*), Bits(*), Bits(*)), Bits(*)),

21 Bits(*),

22 Bits(*) -> Maybe((Bits(*), Bits(*)));

23

24 instance g6 = g6P {

25 params {

26 exp: exp,

27 find_collision_in_TXTR: find_collision_in_TXTR

28 }

29 }

30

31 compose {

32 adversary: {

33 TH: g6,

34 TXTR: g6

35 }

36 }

37 }

Listing 15: Definition of games (compositions) 𝐺′5 and 𝐺′6 in SSBee

1 proof Proof {

2 const exp: fn Bits(*), Integer -> Bits(*);

3 const find_collision_in_TXTR:

4 fn Table((Bits(*), Bits(*), Bits(*)), Bits(*)),

5 Bits(*),

6 Bits(*) -> Maybe((Bits(*), Bits(*)));

7

8 instance g5 = G5 {

9 params {

10 exp: exp

11 }

12 }

13

14 instance g6 = G6 {

179

15 params {

16 exp: exp,

17 find_collision_in_TXTR: find_collision_in_TXTR

18 }

19 }

20

21 gamehops {

22 equivalence g5 g6 {

23 TH : {

24 invariant: [

25 ./proofs/invariant.smt2

26]

27

28 lemmas {

29 same-output: [no-abort, lemma-find-collision]

30 invariant: [no-abort, lemma-find-collision]

31 equal-aborts: [lemma-find-collision]

32 assert-uniqueness: [no-abort, assume-uniqueness-and-none-collision]

33 }

34 }

35 TXTR : {

36 invariant: [

37 ./proofs/invariant.smt2

38]

39

40 lemmas {

41 invariant: [no-abort, lemma-find-collision]

42 same-output: [no-abort, lemma-find-collision]

43 equal-aborts: [lemma-find-collision]

44 assert-uniqueness: [no-abort, assume-uniqueness-and-none-collision]

45 }

46 }

47 }

48 }

49 }

Listing 16: Code of proof file

1 (define-fun invariant-TH-implies-T

2 (

3 (E (Array Bits_* (Maybe Int)))

4 (T (Array (Tuple2 Bits_* Bits_*) (Maybe Bits_*)))

5 (TH (Array (Tuple2 Bits_* Bits_*) (Maybe Bits_*)))

6 (TXTR (Array (Tuple3 Bits_* Bits_* Bits_*) (Maybe Bits_*)))

7)

8 Bool

9 ; TH[Z, s] = h != None => T[Z, s] = h

10 (forall

11 (

12 (Z Bits_*)

13 (s Bits_*)

14)

15 (let

16 (

180

17 (h (select TH (mk-tuple2 Z s)))

18)

19 (=>

20 (not ((_ is mk-none) h))

21 (= h (select T (mk-tuple2 Z s)))

22))))

23 (define-fun invariant-T-NotNone-implies-TH-and-TXTR

24 (

25 (E (Array Bits_* (Maybe Int)))

26 (T (Array (Tuple2 Bits_* Bits_*) (Maybe Bits_*)))

27 (TH (Array (Tuple2 Bits_* Bits_*) (Maybe Bits_*)))

28 (TXTR (Array (Tuple3 Bits_* Bits_* Bits_*) (Maybe Bits_*)))

29)

30 Bool

31 ; T[Z, s] = h != None => TH[Z, s] = h or

32 ; there exists X, Y such that Y^E[X] = Z and TXTR[X, Y, s] = h

33 (forall

34 (

35 (Z Bits_*)

36 (s Bits_*)

37)

38 (let

39 (

40 (h (select T (mk-tuple2 Z s)))

41)

42 (=>

43 (not ((_ is mk-none) h))

44 (or

45 (= h (select TH (mk-tuple2 Z s)))

46 (exists

47 (

48 (X Bits_*)

49 (Y Bits_*)

50)

51 (and

52 (= h (select TXTR (mk-tuple3 X Y s)))

53 (= Z (<<func-exp>> Y (maybe-get (select E X))))

54)))))))

Listing 17: Invariant file

1 (define-fun invariant-TXTR-implies-T

2 (

3 (E (Array Bits_* (Maybe Int)))

4 (T (Array (Tuple2 Bits_* Bits_*) (Maybe Bits_*)))

5 (TH (Array (Tuple2 Bits_* Bits_*) (Maybe Bits_*)))

6 (TXTR (Array (Tuple3 Bits_* Bits_* Bits_*) (Maybe Bits_*)))

7)

8 Bool

9 ; TXTR[X, Y, s] = h != None => T[Y^E[X], s] = h

10 (forall

11 (

12 (X Bits_*)

13 (Y Bits_*)

181

14 (s Bits_*)

15)

16 (let

17 (

18 (h (select TXTR (mk-tuple3 X Y s)))

19)

20 (=>

21 (not ((_ is mk-none) h))

22 (= h (select T (mk-tuple2 (<<func-exp>> Y (maybe-get (select E X))) s)))

23)

24)

25)

26)

27 (define-fun invariant

28 (

29 (state-g5 <GameState_G5_<$$>>)

30 (state-g6 <GameState_G6_<$$>>)

31)

32 Bool

33 (let

34 (

35 (E_left (<pkg-state-g5P-<$$>-E> (<game-G5-<$$>-pkgstate-g5> state-g5)))

36 (E_right (<pkg-state-g6P-<$$>-E> (<game-G6-<$$>-pkgstate-g6> state-g6)))

37 (T (<pkg-state-g5P-<$$>-T> (<game-G5-<$$>-pkgstate-g5> state-g5)))

38 (TH (<pkg-state-g6P-<$$>-TH> (<game-G6-<$$>-pkgstate-g6> state-g6)))

39 (TXTR (<pkg-state-g6P-<$$>-TXTR> (<game-G6-<$$>-pkgstate-g6> state-g6)))

40)

41 (and

42 (= E_left E_right)

43 ; TH[Z, s] = h != None => T[Z, s] = h

44 (invariant-TH-implies-T E_left T TH TXTR)

45 ; T[Z, s] = h != None => TH[Z, s] = h or

46 ; there exists X, Y such that Y^E[X] = Z and TXTR[X, Y, s] = h

47 (invariant-T-NotNone-implies-TH-and-TXTR E_left T TH TXTR)

48 ; TXTR[X, Y, s] = h != None => T[Y^E[X], s] = h

49 (invariant-TXTR-implies-T E_left T TH TXTR)

50)

51)

52)

Listing 18: Invariant file

1 (define-fun <relation-lemma-find-collision-g5-g6-TXTR>

2 (and

3 ; find(table, Z, s) = None <=> forall X,Y. table[X, Y, s] != None => Z != Y^E[X]

4 (forall

5 (

6 (Zp Bits_*)

7 (sp Bits_*)

8 (table (Array (Tuple3 Bits_* Bits_* Bits_*) (Maybe Bits_*)))

9)

10 (=

11 ((_ is mk-none) (<<func-find_collision_in_TXTR>> table Zp sp))

12 (forall

182

13 (

14 (Xp Bits_*)

15 (Yp Bits_*)

16)

17 (=>

18 (not ((_ is mk-none) (select table (mk-tuple3 Xp Yp sp))))

19 (not (= Zp (<<func-exp>> Yp (maybe-get (select E Xp)))))

20))))

21 (forall

22 (

23 (Zp Bits_*)

24 (Xp Bits_*)

25 (Yp Bits_*)

26 (sp Bits_*)

27 (table (Array (Tuple3 Bits_* Bits_* Bits_*) (Maybe Bits_*)))

28)

29 (and

30 ; e = find(table, Z, s) => e_Y ^E[e_X] = Z and table[e_x, e_y, s] != None

31 (let

32 (

33 (e (<<func-find_collision_in_TXTR>> table Zp sp))

34)

35 (=>

36 (not ((_ is mk-none) e))

37 (let

38 (

39 (eX (el2-1 (maybe-get e)))

40 (eY (el2-2 (maybe-get e)))

41)

42 (and

43 (not ((_ is mk-none) (select table (mk-tuple3 eX eY sp))))

44 (= Zp (<<func-exp>> eY (maybe-get (select E eX))))

45))))

46 ; table[X, Y, s] != None => find(table, y^E[X], s) = (X, Y)

47 (=>

48 (not ((_ is mk-none) (select table (mk-tuple3 Xp Yp sp))))

49 (= (mk-some (mk-tuple2 Xp Yp)) (<<func-find_collision_in_TXTR>>

table (<<func-exp>> Yp (maybe-get (select E Xp))) sp))

50)))))

Listing 19: Lemma about 𝜖 operator (arguments of function are removed to fit the
page)

1 (define-fun <relation-assume-uniqueness-and-none-collision-g5-g6-TXTR>

2 (

3 (old-state-g6 <GameState_G6_<$$>>)

4 (return-g5 <OracleReturn-G5-<$$>-g5P-<$$>-TXTR>)

5)

6 Bool

7 (let

8 ((state-g5 (<oracle-return-G5-<$$>-g5P-<$$>-TXTR-game-state> return-g5)))

9 (let

10 (

11 (E_left (<pkg-state-g5P-<$$>-E> (<game-G5-<$$>-pkgstate-g5> state-g5)))

183

12 (oldTXTR (<pkg-state-g6P-<$$>-TXTR> (<game-G6-<$$>-pkgstate-g6> old-state-g6)))

)

13 (and

14 ; find(table, Z, s) = None => forall X,Y. table[X, Y, s] != None => Z != Y^E[X]

15 (forall

16 (

17 (Zp Bits_*)

18 (sp Bits_*)

19 (table (Array (Tuple3 Bits_* Bits_* Bits_*) (Maybe Bits_*))))

20 (=>

21 ((_ is mk-none) (<<func-find_collision_in_TXTR>> table Zp sp))

22 (forall

23 (

24 (Xp Bits_*)

25 (Yp Bits_*)

26)

27 (=>

28 (not ((_ is mk-none) (select table (mk-tuple3 Xp Yp sp))))

29 (not (= Zp (<<func-exp>> Yp (maybe-get (select E_left Xp)))))

30))))

31 ; TXTR[X, Y, s] != None =>

32 ; forall X’, Y’ if TXTR[X’, Y’, s] != None and Y^E[X] = Y’^E[X’] =>

33 ; X = S’ and Y = Y’

34 (forall

35 (

36 (X Bits_*)

37 (Y Bits_*)

38 (s Bits_*)

39)

40 (=>

41 (not ((_ is mk-none) (select oldTXTR (mk-tuple3 X Y s))))

42 (forall

43 (

44 (Xp Bits_*)

45 (Yp Bits_*)

46)

47 (=>

48 (and

49 (not ((_ is mk-none) (select oldTXTR (mk-tuple3 Xp Yp s))))

50 (= (<<func-exp>> Y (maybe-get (select E_left X))) (<<func-exp>> Yp

(maybe-get (select E_left Xp)))))

51 (and

52 (= X Xp)

53 (= Y Yp)

54

55)))))))))

Listing 20: Uniqueness property assuming there is no collision in table if 𝜖 returns ⊥

□

184

5.2.1 Proof of Lemma 5.1

Proof of Lemma 5.1. An adversary can distinguish 𝐺ℎ𝑐𝑜𝑙𝑙0,𝑔𝑟 𝑝 from 𝐺ℎ𝑐𝑜𝑙𝑙1,𝑔𝑟 𝑝 if
upon a call to FIND(𝑋,𝑌, 𝑠𝑎𝑙𝑡), it receives 𝑆[𝑋′, 𝑌 ′, 𝑠𝑎𝑙𝑡] (from the loop), where
𝑌 ′𝐸 [𝑋

′] = 𝑌𝐸 [𝑋] and {𝑋,𝑌 } ≠ {𝑋′, 𝑌 ′}, instead of ⊥. However, 𝑋,𝑌, 𝑋′, 𝑌 ′ are
all honest and uniformly chosen by the game although the adversary can see the
private exponents from DHGET. (𝑋′ and 𝑌 ′ are also honest because one can prove if
𝑆[𝑋,𝑌, 𝑠𝑎𝑙𝑡] ≠ ⊥ then 𝐸 [𝑋] ≠ ⊥ and 𝐸 [𝑌] ≠ ⊥.) Moreover, the probability of the
adversary queries this collision is less than or equal to the probability of the collision
itself. To bound the collision probability, let 𝑋𝑖 be the 𝑖-th DH share returned by
DHGEN for 𝑖 ∈ [𝑄] where 𝑄 is the number of queries to DHGEN. The probability of
collision is bounded as follows:

Pr
[︂
∃𝑖1, 𝑖2, 𝑖3, 𝑖4 s.t. 𝑋𝐸 [𝑋𝑖2]

𝑖1
= 𝑋

𝐸 [𝑋𝑖4]
𝑖3

∧ {𝑖1, 𝑖2} ≠ {𝑖3, 𝑖4}
]︂

= Pr

⎡⎢⎢⎢⎢⎢⎢⎣
⋁︂

𝑖1,𝑖2,𝑖3,𝑖4
{𝑖1,𝑖2}≠{𝑖3,𝑖4}

𝑋
𝐸 [𝑋𝑖2]
𝑖1

= 𝑋
𝐸 [𝑋𝑖4]
𝑖3

⎤⎥⎥⎥⎥⎥⎥⎦
≤

∑︁
𝑖1,𝑖2,𝑖3,𝑖4

{𝑖1,𝑖2}≠{𝑖3,𝑖4}

Pr
[︂
𝑋
𝐸 [𝑋𝑖2]
𝑖1

= 𝑋
𝐸 [𝑋𝑖4]
𝑖3

]︂
=

∑︁
𝑖1,𝑖2,𝑖3,𝑖4

{𝑖1,𝑖2}≠{𝑖3,𝑖4}

Pr
[︁
𝑔𝐸 [𝑋𝑖1]𝐸 [𝑋𝑖2] = 𝑔𝐸 [𝑋𝑖3]𝐸 [𝑋𝑖4]

]︁
=

∑︁
𝑖1,𝑖2,𝑖3,𝑖4

{𝑖1,𝑖2}≠{𝑖3,𝑖4}

Pr
[︁
𝐸 [𝑋𝑖1]𝐸 [𝑋𝑖2] = 𝐸 [𝑋𝑖3]𝐸 [𝑋𝑖4] mod 𝑞

]︁
where the last equality follows from the fact that order of 𝑔 is 𝑞. Now, notice for each
quadruple (𝑖1, 𝑖2, 𝑖3, 𝑖4), |{𝑖1, 𝑖2, 𝑖3, 𝑖4}| ≥ 2. For each of these quadruples, one can
assume without loss of generality that 𝑖1 ≠ 𝑖3. Hence,

Pr𝐸 [𝑋𝑖1],𝐸 [𝑋𝑖3],...
[︁
𝐸 [𝑋𝑖1]𝐸 [𝑋𝑖2] = 𝐸 [𝑋𝑖3]𝐸 [𝑋𝑖4] mod 𝑞

]︁
= Pr𝐸 [𝑋𝑖1],𝐸 [𝑋𝑖3],...

[︁
𝐸 [𝑋𝑖1] = 𝐸 [𝑋𝑖3]𝐸 [𝑋𝑖4]𝐸 [𝑋𝑖2]−1 mod 𝑞

]︁
=
∑︁
𝑒

Pr𝐸 [𝑋𝑖1],𝐸 [𝑋𝑖3],...
[︁
𝐸 [𝑋𝑖1] = 𝐸 [𝑋𝑖3]𝐸 [𝑋𝑖4]𝐸 [𝑋𝑖2]−1 mod 𝑞 |𝐸 [𝑋𝑖3] = 𝑒

]︁
Pr𝐸 [𝑋𝑖3]

[︁
𝐸 [𝑋𝑖3] = 𝑒

]︁
=

1
𝑞

∑︁
𝑒

Pr𝐸 [𝑋𝑖1],𝐸 [𝑋𝑖3],...
[︁
𝐸 [𝑋𝑖1] = 𝐸 [𝑋𝑖3]𝐸 [𝑋𝑖4]𝐸 [𝑋𝑖2]−1] mod 𝑞 |𝐸 [𝑋𝑖3] = 𝑒

]︁
≤ 1
𝑞

∑︁
𝑒

1
𝑞

=
1
𝑞

Notice that Pr𝐸 [𝑋𝑖1],𝐸 [𝑋𝑖3],...
[︁
𝐸 [𝑋𝑖1] = 𝐸 [𝑋𝑖3]𝐸 [𝑋𝑖4]𝐸 [𝑋𝑖2]−1 mod 𝑞 |𝐸 [𝑋𝑖3] = 𝑒

]︁
is

1
𝑞

when |{𝑖1, 𝑖2, 𝑖3, 𝑖4}| = 2 (because {𝑖2, 𝑖4} = {𝑖1, 𝑖3}), 1
𝑞2 when |{𝑖1, 𝑖2, 𝑖3, 𝑖4}| = 3,

185

and 1
𝑞4 when |{𝑖1, 𝑖2, 𝑖3, 𝑖4}| = 4. Therefore, the collision probability is bounded by

𝑄4−2𝑄2+𝑄
𝑞

where 𝑄4 − 2𝑄2 +𝑄 is the number of quadruples where {𝑖1, 𝑖2} ≠ {𝑖3, 𝑖4}.
(There are 𝑄4 in total, 𝑄 of which are of the form (𝑎, 𝑎, 𝑎, 𝑎) while 4

(︁𝑄
2
)︁

ones are
either of the forms (𝑎, 𝑏, 𝑎, 𝑏) or (𝑎, 𝑏, 𝑏, 𝑎).)

To get a tighter bound, notice that there are exactly 6
(︁𝑄
2
)︁

quadruples where {𝑖1, 𝑖2} ≠
{𝑖3, 𝑖4} and |{𝑖1, 𝑖2, 𝑖3, 𝑖4}| = 2. (4

(︁𝑄
2
)︁

quadruples for the case of {𝑎, 𝑏} ≠ {𝑎, 𝑎} and
2
(︁𝑄
2
)︁

quadruples for the case of {𝑎, 𝑎} ≠ {𝑏, 𝑏}). There are 3×3!×4×
(︁𝑄
3
)︁
/2 quadruples

where |{𝑖1, 𝑖2, 𝑖3, 𝑖4}| = 3. Finally, 4!×
(︁𝑄
4
)︁

quaruples where |{𝑖1, 𝑖2, 𝑖3, 𝑖4}| = 4. Hence

the collision probability can be bounded by 6(𝑄2)
𝑞
+ 36(𝑄3)

𝑞2 +
24(𝑄4)
𝑞3 . □

5.2.2 Proof of Lemma 5.3

Proof of Lemma 5.3. The advantage of adversary is bounded by the probability of
assertion failure which is 1

𝑞
. Notice that in a prime-ordered group𝐺, where |𝐺 | = 𝑞, for

1 ≤ 𝛼 < 𝑞, we have 𝑆𝛼 = 𝑇𝛼 if and only if 𝑆 = 𝑇 . (If 𝑆𝛼 = 𝑇𝛼, then (𝑆𝑇−1)𝛼 = id(𝐺).
Assume 𝑆𝑇−1 ≠ id(𝐺), by applying Lagrange theorem to the order of cyclic group
generated by 𝑆𝑇−1, we conclude 𝛼 | 𝑞 which implies 𝛼 = 1, 𝑞.) □

5.2.3 Proof of Lemma 5.4

Proof of Lemma 5.4. This is an example of statistical indistinguishability because
even unbounded adversaries can not distinguish the real and ideal games. Let
𝑅 = (𝑔𝑋1 , . . . , 𝑔𝑋𝑄 , 𝑋1, . . . , 𝑋𝑄) denotes the information the adversary gets after
interacting with game for 𝑄 queries to DHGEN in the real game and similarly
𝐼 = (𝑔𝐴𝑋1 , . . . , 𝑔𝐴𝑋𝑄 , 𝐴𝑋1, . . . , 𝐴𝑋𝑄) be the information the adversary gets from
the ideal game where 𝑋𝑖’s and 𝐴 are random variables and 𝑔𝑋𝑖 ’s (𝑔𝐴𝑋𝑖 ’s) be the
outputs of DHGEN and 𝑋𝑖’s (𝐴𝑋𝑖’s) be the outputs of DHGET. We can show for any
(𝑦1, . . . , 𝑦𝑄) ∈ 𝑍𝑄𝑞 ,

Pr
[︁
𝑅 = (𝑔𝑦1 , . . . , 𝑔𝑦𝑄 , 𝑦1, . . . , 𝑦𝑄)

]︁
= Pr

[︁
𝐼 = (𝑔𝑦1 , . . . , 𝑔𝑦𝑄 , 𝑦1, . . . , 𝑦𝑄)

]︁
and conclude the distribution of information the adversary receives in the real and
ideal games are exactly the same. Clearly, Pr

[︁
𝑅 = (𝑔𝑦1 , . . . , 𝑔𝑦𝑄 , 𝑦1, . . . , 𝑦𝑄)

]︁
= 1

𝑞𝑄
.

186

On the other hand,

Pr
[︁
𝐼 = (𝑔𝑦1 , . . . , 𝑔𝑦𝑄 , 𝑦1, . . . , 𝑦𝑄)

]︁
=
∑︁
𝛼

Pr𝐴,𝑋𝑖
[︁
𝐼 = (𝑔𝑦1 , . . . , 𝑔𝑦𝑄 , 𝑦1, . . . , 𝑦𝑄) |𝐴 = 𝛼

]︁
Pr[𝐴 = 𝛼]

=
∑︁
𝛼

Pr𝐴,𝑋𝑖
[︁
𝑔𝐴𝑋1 = 𝑔𝑦1 ∧ · · · ∧ 𝑔𝐴𝑋𝑄 = 𝑔𝑦𝑄 ∧ 𝐴𝑋1 = 𝑦1 ∧ · · · ∧ 𝐴𝑋𝑄 = 𝑦𝑄 |𝐴 = 𝛼

]︁
Pr[𝐴 = 𝛼]

=
1
𝑞

∑︁
𝛼

Pr𝐴,𝑋𝑖
[︁
𝑔𝐴𝑋1 = 𝑔𝑦1 ∧ · · · ∧ 𝑔𝐴𝑋𝑄 = 𝑔𝑦𝑄 ∧ 𝑋1 = 𝐴−1𝑦1 ∧ · · · ∧ 𝑋𝑄 = 𝐴−1𝑦𝑄 |𝐴 = 𝛼

]︁
=

1
𝑞

∑︁
𝛼

1
𝑞𝑄

=
1
𝑞𝑄

Hence, for uniformly chosen 𝛼 and 𝑥𝑖’s, we have

(𝑔𝛼𝑥1 , . . . , 𝑔𝛼𝑥𝑄 , 𝛼𝑥1, . . . , 𝛼𝑥𝑄)
𝑠𝑡𝑎𝑡≈ (𝑔𝑥1 , . . . , 𝑔𝑥𝑄 , 𝑥1, . . . , 𝑥𝑄).

□

Remark. For formal verification of the entire proof in SSBee, one shall define
indistinguishability of games 𝐺ℎ𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝, 𝐺𝑐𝑐𝑜𝑙𝑙𝑏,𝑔𝑟 𝑝, 𝐺𝑠𝑡𝑎𝑡𝑏,𝑔𝑟 𝑝, 𝐺𝑎𝑙𝑝ℎ𝑎𝑏,𝑔𝑟 𝑝 as
asssumptions because only the reductions of the hybrid games 𝐺𝑖 to these games
can be verified in SSBee. On the other hand, reductions 𝐺5

𝑐𝑜𝑑𝑒≡ R56 → 𝐺′5 and

𝐺6
𝑐𝑜𝑑𝑒≡ R56 → 𝐺′6 as well as all other code equivalences in Claims 5.8 and 5.19 can

be essentially verified in SSBee. (with a proper encoding of the loops)

187

References

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick
Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger, Drew
Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot,
Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann.
Imperfect forward secrecy: How Diffie-Hellman fails in practice. In
22nd ACM Conference on Computer and Communications Security,
October 2015.

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle
Diffie-Hellman Assumptions and an Analysis of DHIES, page 143–158.
Springer Berlin Heidelberg, 2001.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Break-
ing the TLS and DTLS record protocols. In 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013,
pages 526–540. IEEE Computer Society, 2013.

[ASS+16] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia
Heninger, Maik Dankel, Jens Steube, Luke Valenta, David Adrian,
J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney,
Susanne Engels, Christof Paar, and Yuval Shavitt. Drown: breaking
tls using sslv2. In Proceedings of the 25th USENIX Conference on
Security Symposium, SEC’16, page 689–706, USA, 2016. USENIX
Association.

[AZ24] Jeremy Avigad and Richard Zach. The Epsilon Calculus. In Edward N.
Zalta and Uri Nodelman, editors, The Stanford Encyclopedia of Phi-
losophy. Metaphysics Research Lab, Stanford University, Fall 2024
edition, 2024.

[BBB+19] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet,
Cas Cremers, Kevin Liao, and Bryan Parno. SoK: Computer-aided
cryptography. Cryptology ePrint Archive, Paper 2019/1393, 2019.

[BBB+22] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer,
Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir
Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias
Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni
Zohar. cvc5: A versatile and industrial-strength SMT solver. In
Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes
in Computer Science, pages 415–442. Springer, 2022.

188

[BBDL+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. A messy state of the union:
Taming the composite state machines of tls. In 2015 IEEE Symposium
on Security and Privacy, pages 535–552, 2015.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the tls 1.3 standard candidate.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 483–502,
2017.

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A modular reusable verifier
for object-oriented programs. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal
Methods for Components and Objects, 4th International Symposium,
FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005,
Revised Lectures, volume 4111 of Lecture Notes in Computer Science,
pages 364–387. Springer, 2005.

[BCDS22] David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Tamarin:
Verification of Large-Scale, Real World, Cryptographic Protocols.
IEEE Security and Privacy Magazine, 2022.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[BCK21] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Cryptographic
security of the MLS RFC, draft 11. Cryptology ePrint Archive, Paper
2021/137, 2021.

[BDLE+21] Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric
Fournet, Konrad Kohbrok, and Markulf Kohlweiss. Key-schedule
security for the TLS 1.3 standard. Cryptology ePrint Archive, Paper
2021/467, 2021. https://eprint.iacr.org/2021/467.

[BDLF+18] Chris Brzuska, Antoine Delignat-Lavaud, Cedric Fournet, Konrad
Kohbrok, and Markulf Kohlweiss. State separation for code-based
game-playing proofs. Cryptology ePrint Archive, Paper 2018/306,
2018. https://eprint.iacr.org/2018/306.

[BEW25] Chris Brzuska, Christoph Egger, and Jan Winkelmann. Ssbee, 2025.
https://github.com/sspverif/sspverif.

189

https://eprint.iacr.org/2021/467
https://eprint.iacr.org/2018/306
https://github.com/sspverif/sspverif

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian
Janson. PRF-ODH: Relations, instantiations, and impossibil-
ity results. Cryptology ePrint Archive, Paper 2017/517, 2017.
https://eprint.iacr.org/2017/517.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santi-
ago Zanella Béguelin. Computer-aided security proofs for the working
cryptographer. In Proceedings of the 31st Annual Conference on Ad-
vances in Cryptology, CRYPTO’11, page 71–90, Berlin, Heidelberg,
2011. Springer-Verlag.

[BGZB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin.
Formal certification of code-based cryptographic proofs. SIGPLAN
Not., 44(1):90–101, January 2009.

[BJ23] Bruno Blanchet and Charlie Jacomme. CryptoVerif: a
Computationally-Sound Security Protocol Verifier. Technical Re-
port RR-9526, Inria, October 2023.

[BL12] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the
concrete: the power of free precomputation. Cryptology ePrint Archive,
Paper 2012/318, 2012.

[BL24] Chris Brzuska and Valtteri Lipiäinen. Companion to cryptographic
primitives, protocols and proofs. https://cryptocompanion.gith

ub.io/cryptocompanion/cryptocompanion.pdf, 2024. Accessed:
2018-12-06.

[Bla12] Bruno Blanchet. Security protocol verification: symbolic and compu-
tational models. In Proceedings of the First International Conference
on Principles of Security and Trust, POST’12, page 3–29, Berlin,
Heidelberg, 2012. Springer-Verlag.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with
the applied pi calculus and proverif. Found. Trends Priv. Secur.,
1(1–2):1–135, October 2016.

[Bla18] Bruno Blanchet. Composition theorems for cryptoverif and applica-
tion to tls 1.3. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 16–30, 2018.

[BO21] Chris Brzuska and Sabine Oechsner. A state-separating proof for yao’s
garbling scheme. Cryptology ePrint Archive, Paper 2021/1453, 2021.

190

https://eprint.iacr.org/2017/517
https://cryptocompanion.github.io/cryptocompanion/cryptocompanion.pdf
https://cryptocompanion.github.io/cryptocompanion/cryptocompanion.pdf

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs
and the security of triple encryption. Cryptology ePrint Archive, Paper
2004/331, 2004.

[BWM99] Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks
on the station-to-station (sts) protocol. In Public Key Cryptography,
Second International Workshop on Practice and Theory in Public
Key Cryptography, PKC ’99, Kamakura, Japan, March 1-3, 1999,
Proceedings, volume 1560 of Lecture Notes in Computer Science,
pages 154–170. Springer, 1999.

[Can00] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. Cryptology ePrint Archive, Paper 2000/067,
2000.

[CCD+23] Vincent Cheval, Cas Cremers, Alexander Dax, Lucca Hirschi, Charlie
Jacomme, and Steve Kremer. Hash gone bad: Automated discovery
of protocol attacks that exploit hash function weaknesses. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 5899–5916,
Anaheim, CA, August 2023. USENIX Association.

[CDJZ23] Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao.
Automated analysis of protocols that use authenticated encryption:
How subtle AEAD differences can impact protocol security. Cryptology
ePrint Archive, Paper 2023/1246, 2023.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of tls 1.3. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, page 1773–1788, New York, NY,
USA, 2017. Association for Computing Machinery.

[CHSvdM16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe.
Automated analysis and verification of tls 1.3: 0-rtt, resumption and
delayed authentication. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 470–485, 2016.

[CJ19] Cas Cremers and Dennis Jackson. Prime, order please! revisiting small
subgroup and invalid curve attacks on protocols using diffie-hellman.
Cryptology ePrint Archive, Paper 2019/526, 2019.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack, page 13–25.
Springer Berlin Heidelberg, 1998.

[CVE09] Cve-2009-3555., 2009. https://www.cve.org/CVERecord?id=CVE-200

9-3555.

191

https://www.cve.org/CVERecord?id=CVE-2009-3555
https://www.cve.org/CVERecord?id=CVE-2009-3555

[DFGS20] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Ste-
bila. A cryptographic analysis of the TLS 1.3 handshake protocol.
Cryptology ePrint Archive, Paper 2020/1044, 2020.

[DG19] Nir Drucker and Shay Gueron. Selfie: reflections on TLS 1.3 with
PSK. Cryptology ePrint Archive, Paper 2019/347, 2019.

[DKO21] François Dupressoir, Konrad Kohbrok, and Sabine Oechsner. Bringing
state-separating proofs to EasyCrypt - a security proof for cryptobox.
Cryptology ePrint Archive, Paper 2021/326, 2021.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[Egg22] Christoph Egger. On Abstraction and Modularization in Proto-
col Analysis. Phd thesis, Friedrich-Alexander-Universität Erlangen-
Nürnberg, 2022. https://nbn-resolving.org/urn:nbn:de:bvb:

29-opus4-238950.

[EMS25] Ross Evans, Matthew McKague, and Douglas Stebila. ProofFrog: A
tool for verifying game-hopping proofs. Cryptology ePrint Archive,
Paper 2025/418, 2025.

[Eva24] Ross Evans. Prooffrog: A tool for verifying game-hopping proofs.
Master thesis, University of Waterloo, 2024. http://hdl.handle.net

/10012/20441.

[FG17] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip
time: The case of the tls 1.3 handshake candidates. In 2017 IEEE
European Symposium on Security and Privacy (EuroSP), pages 60–75,
2017.

[HRM+21] Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo
Winterhalter, Carmine Abate, Nikolaj Sidorenco, Catalin Hritcu, Kenji
Maillard, and Bas Spitters. SSProve: A foundational framework for
modular cryptographic proofs in coq. Cryptology ePrint Archive,
Paper 2021/397, 2021.

[JCCGS19] Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse.
Seems legit: Automated analysis of subtle attacks on protocols that use
signatures. Cryptology ePrint Archive, Paper 2019/779, 2019.

[JKSS11] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On
the security of TLS-DHE in the standard model. Cryptology ePrint
Archive, Paper 2011/219, 2011.

192

https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-238950
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-238950
http://hdl.handle.net/10012/20441
http://hdl.handle.net/10012/20441

[KE10] Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869, May 2010.

[Koh23] Konrad Kohbrok. State-Separating Proofs and Their Applications.
Phd thesis, Aalto University, 2023. https://urn.fi/URN:ISBN:

978-952-64-1356-3.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The
HKDF scheme. Cryptology ePrint Archive, Paper 2010/264, 2010.

[KW15] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3.
Cryptology ePrint Archive, Paper 2015/978, 2015.

[Lei10] K. Rustan M. Leino. Dafny: an automatic program verifier for func-
tional correctness. In Proceedings of the 16th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR’10, page 348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

[Mau11] Ueli Maurer. Constructive cryptography — a new paradigm for security
definitions and proofs. In Proceedings of the 2011 International
Conference on Theory of Security and Applications, TOSCA’11, page
33–56, Berlin, Heidelberg, 2011. Springer-Verlag.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard
Chazelle, editor, The Second Symposium on Innovations in Computer
Science, ICS 2011, pages 1–21. Tsinghua University Press, 1 2011.

[MSS16] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-
Verlag, 2016.

[Pun21] Kirthivaasan Puniamurthy. A proof viewer for state-separating proofs:
Yao’s garbling scheme. Master thesis, Aalto University, 2021. https:

//urn.fi/URN:NBN:fi:aalto-202101311851.

[Raj25a] Amirhosein Rajabi. Kem-dem cca security formalization in ssbee,
2025. https://github.com/tornado80/sspverif/tree/kem-dem-cca

-security/example-projects/kem-dem-cca-security.

[Raj25b] Amirhosein Rajabi. Parameterless tls 1.3 key schedule security
formalization in ssbee (second approach), 2025. https://github.com

/tornado80/sspverif/tree/tls13-key-schedule/example-projects/

tls13-key-schedule-parameterless.

[Raj25c] Amirhosein Rajabi. Parametrized tls 1.3 key schedule security formal-
ization in ssbee (first approach), 2025. https://github.com/tornado

193

https://urn.fi/URN:ISBN:978-952-64-1356-3
https://urn.fi/URN:ISBN:978-952-64-1356-3
https://urn.fi/URN:NBN:fi:aalto-202101311851
https://urn.fi/URN:NBN:fi:aalto-202101311851
https://github.com/tornado80/sspverif/tree/kem-dem-cca-security/example-projects/kem-dem-cca-security
https://github.com/tornado80/sspverif/tree/kem-dem-cca-security/example-projects/kem-dem-cca-security
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule-parameterless
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule-parameterless
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule-parameterless
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule

80/sspverif/tree/tls13-key-schedule/example-projects/tls13-k

ey-schedule.

[Raj25d] Amirhosein Rajabi. Sodh g5g6 equivalence, 2025. https://github.c

om/tornado80/sspverif/tree/sodh-stuff/example-projects/sodh-g

5g6-equivalence.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446, August 2018.

[Roc25] Rocq Prover Development Team. The Rocq prover reference manual –
release 9.0.0. https://rocq-prover.org/doc/V9.0.0/refman/index.

html, 2025.

[Rog06] Phillip Rogaway. Formalizing human ignorance: Collision-resistant
hashing without the keys. Cryptology ePrint Archive, Paper 2006/281,
2006.

194

https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule
https://github.com/tornado80/sspverif/tree/tls13-key-schedule/example-projects/tls13-key-schedule
https://github.com/tornado80/sspverif/tree/sodh-stuff/example-projects/sodh-g5g6-equivalence
https://github.com/tornado80/sspverif/tree/sodh-stuff/example-projects/sodh-g5g6-equivalence
https://github.com/tornado80/sspverif/tree/sodh-stuff/example-projects/sodh-g5g6-equivalence
https://rocq-prover.org/doc/V9.0.0/refman/index.html
https://rocq-prover.org/doc/V9.0.0/refman/index.html

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Symbolic model vs computational model
	1.2 State-separating proofs (SSP) framework
	1.3 Formal verification in the computational model
	1.4 TLS 1.3 Key Schedule Security
	1.5 Original Research Questions
	1.6 Contributions
	1.7 Outline

	2 Preliminaries
	2.1 State Separating Proofs (SSP)
	2.1.1 Security definitions in SSP

	2.2 Paving the way for code equivalence
	2.3 CCA-Secuirty of KEM-DEM
	2.4 SMT Solvers and SMT-LIB language
	2.5 SSBee
	2.5.1 Proofs in SSBee
	2.5.2 Games and packages in SSBee

	2.6 Proofs in SSBee: Revisited
	2.6.1 Reductions
	2.6.2 Code equivalence
	2.6.3 Randomness mapping
	2.6.4 Invariants
	2.6.5 KEM scheme correctness property as a lemma
	2.6.6 Randomness mapping issue

	2.7 How to run SSBee?

	3 TLS 1.3 Key Schedule
	3.1 TLS 1.3 Handshake and Key Schedule
	3.1.1 Towards a key schedule security model

	3.2 Key Schedule Security Model
	3.2.1 Cryptographic Agility
	3.2.2 Handles
	3.2.3 Handle-based key derivation
	3.2.4 Key names and parents
	3.2.5 Agile handles
	3.2.6 Resumption levels
	3.2.7 Packages
	3.2.8 Security games

	3.3 Overview of Key Schedule Security Analysis
	3.3.1 Modular SODH assumption
	3.3.2 Core key schedule security: Hybrid argument
	3.3.3 Mapping parameters
	3.3.4 Applying the core key schedule security
	3.3.5 Removing the mapping

	4 Towards Formal Verification of Key Schedule Security in SSBee
	4.1 Translation of games and packages pseudocode to SSBee language
	4.1.1 Game compositions
	4.1.2 Key package
	4.1.3 Log package
	4.1.4 Other packages

	4.2 Towards verification of Lemma C.2
	4.2.1 Oracle DHEXP
	4.2.2 Oracle SET
	4.2.3 Oracles GET, XPD, and XTR
	4.2.4 Invariance of state relations
	4.2.5 One-sided invariants and invariant bubbling

	4.3 Cheat sheet of verification techniques for SSBee users
	4.4 Future vision for SSBee

	5 Salted Oracle Diffie-Hellman Assumption Analysis
	5.1 Security games
	5.2 Security reduction
	5.2.1 Proof of Lemma 5.1
	5.2.2 Proof of Lemma 5.3
	5.2.3 Proof of Lemma 5.4

	References

